[1] M. Badami, P. Nuccio, A. Signoretto, Experimental and numerical analysis of a small-scale turbojet engine, Energy Conversion and Management, 76(0) (2013) 225-233.
[2] A. Gimelli, R. Sannino, A multi-variable multi-objective methodology for experimental data and thermodynamic analysis validation: An application to micro gas turbines, Applied Thermal Engineering, 134 (2018) 501-512.
[3] M. Javidmehr, F. Joda, A. Mohammadi, Thermodynamic and economic analyses and optimization of a multi-generation system composed by a compressed air storage, solar dish collector, micro gas turbine, organic Rankine cycle, and desalination system, Energy Conversion and Management, 168 (2018) 467-481.
[4] C.M. Bartolini, F. Caresana, G. Comodi, L. Pelagalli, M. Renzi, S. Vagni, Application of artificial neural networks to micro gas turbines, Energy Conversion and Management, 52(1) (2011) 781-788.
[5] M. Mirzaee, R. Zare, M. Sadeghzadeh, H. Maddah, M.H. Ahmadi, E. Acıkkalp, L. Chen, Thermodynamic analyses of different scenarios in a CCHP system with micro turbine – Absorption chiller, and heat exchanger, Energy Conversion and Management, 198 (2019) 111919.
[6] S. Talebi, A. Tousi, The effects of compressor blade roughness on the steady state performance of micro-turbines, Applied Thermal Engineering, 115 (2017) 517-527.
[7] S. Mazzoni, G. Cerri, L. Chennaoui, A simulation tool for concentrated solar power based on micro gas turbine engines, Energy Conversion and Management, 174 (2018) 844-854.
[8] B. Dehghan B, Performance assessment of ground source heat pump system integrated with micro gas turbine: Waste heat recovery, Energy Conversion and Management, 152 (2017) 328-341.
[9] Micro Gas Turbine Technology Summary, ETN Global, 2016.
[10] N. Aldi, N. Casari, M. Morini, M. Pinelli, P.R. Spina, A. Suman, Gas Turbine Fouling: A Comparison Among 100 Heavy-Duty Frames, Journal of Engineering for Gas Turbines and Power, 141(3) (2018) 032401-032401-032412.
[11] E. Mohammadi, M. Montazeri-Gh, Simulation of Full and Part-Load Performance Deterioration of Industrial Two-Shaft Gas Turbine, Journal of Engineering for Gas Turbines and Power, 136(9) (2014) 092602-092609.
[12] M.J. Kim, J.H. Kim, T.S. Kim, The effects of internal leakage on the performance of a micro gas turbine, Applied Energy, 212 (2018) 175-184.
[13] E. Mohammadi, M. Montazeri-Gh, Performance enhancement of global optimization-based gas turbine fault diagnosis systems, Journal of Propulsion and Power, 32(1) (2015) 214-224.
[14] M. Tahan, E. Tsoutsanis, M. Muhammad, Z.A. Karim, Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review, Applied energy, 198 (2017) 122-144.
[15] A.A. Hamed, W. Tabakoff, R. Wenglarz, Erosion, Deposition, and Their Effect on Performance, in: Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics, American Institute of Aeronautics and Astronautics, Inc., 2014, pp. 585-611.
[16] T.S. Kim, Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation, Applied Energy, 212 (2018) 1345-1359.
[17] A. Kellersmann, S. Weiler, C. Bode, J. Friedrichs, J. Städing, G. Ramm, Surface Roughness Impact on Low-Pressure Turbine Performance Due to Operational Deterioration, Journal of Engineering for Gas Turbines and Power, 140(6) (2018) 062601-062601-062607.
[18] E. Tsoutsanis, N. Meskin, Derivative-driven window-based regression method for gas turbine performance prognostics, Energy, 128 (2017) 302-311.
[19] S.S. Talebi, A. Madadi, A.M. Tousi, M. Kiaee, Micro Gas Turbine fault detection and isolation with a combination of Artificial Neural Network and off-design performance analysis, Engineering Applications of Artificial Intelligence, 113 (2022) 104900.
[20] M. Badami, M.G. Ferrero, A. Portoraro, Dynamic parsimonious model and experimental validation of a gas microturbine at part-load conditions, Applied Thermal Engineering, 75 (2015) 14-23.
[21] Y. Qingcai, S. Li, Y. Cao, N. Zhao, Full and Part-Load Performance Deterioration Analysis of Industrial Three-Shaft Gas Turbine Based on Genetic Algorithm, in: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, 2016, pp. V006T005A016-V006T005A016.
[22] D. Amare, T. Aklilu, S. Gilani, Effects of performance deterioration on gas path measurements in an industrial gas turbine, ARPN J. of Engineering, 11 (2016) 14202-14207.
[23] D. Zhou, T. Wei, D. Huang, Y. Li, H. Zhang, A gas path fault diagnostic model of gas turbines based on changes of blade profiles, Engineering Failure Analysis, 109 (2020) 104377.
[24] M. Montazeri-Gh, A. Nekoonam, Gas path component fault diagnosis of an industrial gas turbine under different load condition using online sequential extreme learning machine, Engineering Failure Analysis, 135 (2022) 106115.
[25] K. Brun, M. Nored, and R. Kurz, Analysis of Solid Particle Surface Impact Behavior in Turbomachines to Assess Blade Erosion and Fouling, in: Forty-First Turbomachinery Symposium, Houston, Texas: Turbomachinery Laboratory, Texas A&M University, 2012.
[26] P. Bauwens, Gas path analysis for the MTT micro turbine, Delft University of technology, 2015.
[27] S.S. Talebi, A. Mesgarpoor Tousi, Investigation of Compressor Blade Roughness Increment Effect on Micro Turbine Performance, Amirkabir Journal of Mechanical Engineering, 49(3) (2017) 471-484.
[28] S. Talebi, A. Tousi, A. Madadi, M. Kiaee, A methodology for identifying the most suitable measurements for engine level and component level gas path diagnostics of a micro gas turbine, 236(5) (2022) 2646-2661.
[29] M. Pourhasan, Effect of component degradation on gas turbine performance, Amirkabir University of Technology, 2018.
[30] M. Kiaee, A.M. Tousi, Vector-Based Deterioration Index for Gas Turbine Gas-Path Prognostics Modeling Framework, Energy, (2020) 119198.
[31] P. Pilavachi, Power generation with gas turbine systems and combined heat and power, Applied Thermal Engineering, 20(15) (2000) 1421-1429.
[32] H. Cohen, G. Rogers, H. Saravanamuttoo, Gas turbine theory, 1996, London, UK.
[33] M. Kiaee, A. Tousi, M. Toudefallah, Performance adaptation of a 100 kW microturbine, Applied Thermal Engineering, 87 (2015) 234-250.
[34] K. Thu, B.B. Saha, K.J. Chua, T.D. Bui, Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications, Applied Energy, 178 (2016) 600-608.
[35] W. Wang, R. Cai, N. Zhang, General characteristics of single shaft microturbine set at variable speed operation and its optimization, Applied Thermal Engineering, 24(13) (2004) 1851-1863.
[36] T100 Detailed Specifications, in, Turbec, 2009.
[37] M.M. Majoumerd, H.N. Somehsaraei, M. Assadi, P. Breuhaus, Micro gas turbine configurations with carbon capture - Performance assessment using a validated thermodynamic model, Applied Thermal Engineering, Volume 73(1) (2014) 172-184.
[38] H. Saito, Micro gas turbine risks and market in: International Association of Engineering Insurers (IMIA), Stokholm, Sweden, 2003.
[39] P. Akbari, R. Nalim, N. Müller, Performance Enhancement of Microturbine Engines Topped With Wave Rotors, Journal of engineering for gas turbines and power, 128(1) (2006) 190-202.
[40] M.A.R. Nascimento, L. Rodrigues, E. Santos, E.E.B. Gomes, F.L.G. Dias, E.I.G. Velásques, R.A.M. Carrillo, Micro gas turbine engine: a review, in: E. Benini (Ed.) Progress in gas turbine performance, InTech, Rijeka, Croatia, 2014, pp. 107-141.
[41] P1012 C600 600kW Power Package HP Natural Gas Capstone Turbine Corporation, 2010.
[42] 100 kW CHP Microturbine, in, Elliott Microturbines, 2005.
[43] F. Bozza, A. Pontecorvo, F. Reale, R. Tuccillo, Analisi Del Funzionamento A Regime Ed In Transitorio Di Una Microturbina A Gas, in: 60° Congresso Nazionale ATI, Roma, 2005.
[44] C. Wei, S. Zang, Experimental Investigation on the Off-Design Performance of a Small-Sized Humid Air Turbine Cycle, Applied Thermal Engineering, 51 (2013).
[45] P.P. Walsh, P. Fletcher, Gas turbine performance, John Wiley & Sons, 2004.
[46] D.P. Bakalis, A.G. Stamatis, Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components, Energy Conversion and Management, 64 (2012) 213-221.
[47] E.E.B. Gomes, D. McCaffrey, M.J.M. Garces, A.L. Polizakis, P. Pilidis, Comparative Analysis of Microturbines Performance Deterioration and Diagnostics, in: GT2006 - ASME Turbo Expo 2006: Power for Land, Sea and Air, ASME, Barcelona, Spain, 2006, pp. 269-276.
[48] F. Caresana, L. Pelagalli, G. Comodi, M. Renzi, Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior, Applied Energy, 124 (2014) 17-27.
[49] H. Nikpey, M. Assadi, P. Breuhaus, Development of an optimized artificial neural network model for combined heat and power micro gas turbines, Applied Energy, 108 (2013) 137-148.
[50] H. Nikpey, M. Assadi, P. Breuhaus, P.T. Mørkved, Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas, Applied Energy, 117 (2014) 30-41.