Exploring Flame Characteristics of CH4/CO2/Ammonia/Air Mixtures under Elevated Conditions: An Interferometry-Based Investigation

Document Type : Research Article

Authors

1 Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Ammonia (NH3) stands out as a leading option for large-scale renewable energy storage and long-distance transportation. By incorporating landfill gas and raising initial reactant temperatures, NH3 reactivity is effectively enhanced in gas turbines and boilers. This study focuses on exploring the laminar flame propagation of NH3/landfill mixtures under elevated conditions. Accurate predictions for laminar burning velocity were achieved through numerical simulations employing Ansys Chemkin-Pro, along with the San Diego, Okafor, and GRI-Mech 3.0 mechanisms. Elevating pressure from 1 to 10 bar resulted in a reduction in laminar burning velocity from 16.1 to 6 cm/s, ultimately leading to an increase in adiabatic flame temperature from 2102 to 2143 attributable to changes in combustion equilibrium. Also, the results underscored the significant influence of ammonia concentration on augmenting laminar burning velocities. In cases with higher laminar burning velocity, the proportion of NH3 added tends towards zero, while in cases with lower laminar burning velocity, the addition ratio of NH3 tends towards one. The addition of ammonia leads to a reduction in the pool of radicals. Put simply, because ammonia has a lower laminar burning velocity, the overall Laminar burning velocity of the mixture is reduced as the concentration of ammonia in the fuel mixture increases.

Keywords

Main Subjects


  1. Valera-Medina A, Xiao H, Owen-Jones M, David WI, Bowen P. Ammonia for power. Prog Energy Combust Sci. 2018;69:63-102.
  2. Kobayashi H, Hayakawa A, Somarathne KKA, Okafor EC. Science and technology of ammonia combustion. P Combust Inst. 2019;37(1):109-33.
  3. Maab MPG, Bathaei S, Kim M, Esfahani JA, Kim KC. Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation. Journal of Thermal Analysis and Calorimetry. 2022:1-18.
  4. Hayakawa A, Goto T, Mimoto R, Arakawa Y, Kudo T, Kobayashi H. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel. 2015;159:98-106.
  5. Mei B, Zhang X, Ma S, Cui M, Guo H, Cao Z, et al. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combust Flame. 2019;210:236-46.
  6. Han X, Wang Z, Costa M, Sun Z, He Y, Cen K. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust Flame. 2019;206:214-26.
  7. Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, et al. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and flame. 2018;187:185-98.
  8. Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, et al. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame. 2019;204:162-75.
  9. Zhang J, Chen D, Lai S, Li J, Huang H, Kobayashi N. Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions. Energy. 2024:130833.
  10. Mohod AV, Bagal MV. Technological developments in the energy generation from municipal solid waste (landfill gas capture, combustion, pyrolysis and gasification). 360-Degree Waste Management, Volume 1: Elsevier; 2023. p. 139-57.
  11. Cardona CA, Amell AA. Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air. Int J Hydrogen Energy. 2013;38(19):7994-8001.
  12. Elhawary S, Saat A, Wahid MA, Zain MZM. Effect of nitrous oxide on laminar burning velocity, hydrodynamic, and diffusive–thermal instability of biogas combustion. Journal of Thermal Analysis and Calorimetry. 2023;148(8):3073-88.
  13. Beeckmann J, Cai L, Pitsch H. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure. Fuel. 2014;117:340-50.
  14. Taqizadeh A, Jahanian O, Kani SIP. Effects of equivalence and fuel ratios on combustion characteristics of an RCCI engine fueled with methane/n-heptane blend. Journal of Thermal Analysis and Calorimetry. 2020;139:2541-51.
  15. Al-Hamamre Z, Yamin J. The effect of hydrogen addition on premixed laminar acetylene–hydrogen–air and ethanol–hydrogen–air flames. Int J Hydrogen Energy. 2013;38(18):7499-509.
  16. He Y, Wang Z, Yang L, Whiddon R, Li Z, Zhou J, et al. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel. 2012;95:206-13.
  17. Kiani M, Houshfar E, Ashjaee M. Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners. Energy. 2019;170:507-20.
  18. Wang L, Liu Z, Chen S, Zheng C, Li J. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane. Energy & fuels. 2013;27(12):7602-11.
  19. Hu E, Jiang X, Huang Z, Iida N. Numerical study on the effects of diluents on the laminar burning velocity of methane–air mixtures. Energy & fuels. 2012;26(7):4242-52.
  20. Hinton N, Stone R. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel. 2014;116:743-50.
  21. Askari MH, Ashjaee M. Experimental measurement of laminar burning velocity and flammability limits of landfill gas at atmospheric and elevated pressures. Energy & Fuels. 2017;31(3):3196-205.
  22. Kiani M, Houshfar E, Ashjaee M. An experimental and numerical study on the combustion and flame characteristics of hydrogen in intersecting slot burners. International Journal of Hydrogen Energy. 2018;43(5):3034-49.
  23. Hauf W, Grigull U. Advances in heat transfer. Advances in heat transfer, Academic, New York. 1970;6:133-6.
  24. Flack RD. Mach-Zehnder interferometer errors resulting from test section misalignment. Applied Optics. 1978;17(7):985-7.
  25. ANSYS Chemkin-Pro® Release 17.0 (Chemkin-Pro 15151) ANSYS, . 2016-01-11.
  26. Kohansal M, Kiani M, Masoumi S, Nourinejad S, Ashjaee M, Houshfar E. Experimental and numerical investigation of NH3/CH4 mixture combustion properties under elevated initial pressure and temperature. Energy & Fuels. 2023;37(14):10681-96.
  27. Bardolf R, Winter F. Comparison of chemical kinetic mechanisms for combustion simulation of treated biogas. The Holistic Approach to Environment. 2014;4(2):65-9.
  28. Dowdy DR, Smith DB, Taylor SC, Williams A, editors. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. Symp (Int) Combust; 1991: Elsevier.
  29. Sivashinsky G. On a distorted flame front as a hydrodynamic discontinuity. Acta Astronaut. 1976;3(11-12):889-918.
  30. Matalon M, Matkowsky BJ. Flames as gasdynamic discontinuities. J Fluid Mech. 1982;124:239-59.
  31. Clavin P. Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog Energy Combust Sci. 1985;11(1):1-59.
  32. Kelley AP, Law CK. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust Flame. 2009;156(9):1844-51.
  33. Kobayashi H, Tamura T, Maruta K, Niioka T, Williams FA, editors. Burning velocity of turbulent premixed flames in a high-pressure environment. Symp (Int) Combust; 1996: Elsevier.
  34. Konnov AA, Mohammad A, Kishore VR, Kim NI, Prathap C, Kumar S. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+ air mixtures. Progress in Energy and Combustion Science. 2018;68:197-267.
  35. Chen Z. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame. 2015;162(6):2442-53.
  36. Yu H, Han W, Santner J, Gou X, Sohn CH, Ju Y, et al. Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combustion and Flame. 2014;161(11):2815-24.
  37. Burke MP, Chen Z, Ju Y, Dryer FL. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combustion and Flame. 2009;156(4):771-9.
  38. Ronney PD, Wachman HY. Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities. Combustion and Flame. 1985;62(2):107-19.
  39. Mei B, Ma S, Zhang Y, Zhang X, Li W, Li Y. Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm. Combust Flame. 2020;220:368-77.
  40. Mendiara T, Glarborg P. Ammonia chemistry in oxy-fuel combustion of methane. Combust Flame. 2009;156(10):1937-49.
  41. Mikulčić H, Baleta J, Wang X, Wang J, Qi F, Wang F. Numerical simulation of ammonia/methane/air combustion using reduced chemical kinetics models. Int J Hydrogen Energy. 2021.
  42. Xiao H, Valera-Medina A, Marsh R, Bowen PJ. Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions. Fuel. 2017;196:344-51.
  43. Sabia P, Sorrentino G, Chinnici A, Cavaliere A, Ragucci R. Dynamic behaviors in methane MILD and oxy-fuel combustion. Chemical effect of CO2. Energy Fuels. 2015;29(3):1978-86.
  44. Yossefi D, Ashcroft S, Hacohen J, Belmont M, Thorpe I. Combustion of methane and ethane with CO2 replacing N2 as a diluent. Modelling of combined effects of detailed chemical kinetics and thermal properties on the early stages of combustion. Fuel. 1995;74(7):1061-71.
  45. Iliuta I, Tahoces R, Patience GS, Rifflart S, Luck F. Chemical‐looping combustion process: Kinetics and mathematical modeling. AICHE J. 2010;56(4):1063-79.
  46. LOO CE, TAME N, PENNY GC. Combustion Physics Combustion Physics 94, 2006. ISIJ Int. 2012;52(6):967-76.
  47. Cussler EL, Cussler EL. Diffusion: Mass Transfer in Fluid Systems: Cambridge University Press; 2009.
  48. Sabia P, Sorrentino G, Bozza P, Ceriello G, Ragucci R, De Joannon M. Fuel and thermal load flexibility of a MILD burner. P Combust Inst. 2019;37(4):4547-54.
  49. Glarborg P, Bentzen LL. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels. 2008;22(1):291-6.
  50. Andrussow L. Über die schnell verlaufenden katalytischen Prozesse in strömenden Gasen und die Ammoniak‐Oxydation (V). Berichte der deutschen chemischen Gesellschaft (A and B Series). 1927;60(8):2005-18.
  51. Lhuillier C, Brequigny P, Lamoureux N, Contino F, Mounaïm-Rousselle C. Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures. Fuel. 2020;263:116653.
  52. Skreiberg Ø, Kilpinen P, Glarborg P. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combust Flame. 2004;136(4):501-18.