[1] L. Yu, R. Wang, Researches on Adaptive Cruise Control system: A state of the art review, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236(2-3) (2022) 211-240.
[2] H.A. Ignatious, M. Khan, An overview of sensors in Autonomous Vehicles, Procedia Computer Science, 198 (2022) 736-741.
[3] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, W. Shi, Computing systems for autonomous driving: State of the art and challenges, IEEE Internet of Things Journal, 8(8) (2020) 6469-6486.
[4] I. Mahdinia, R. Arvin, A.J. Khattak, A. Ghiasi, Safety, energy, and emissions impacts of adaptive cruise control and cooperative adaptive cruise control, Transportation Research Record, 2674(6) (2020) 253-267.
[5] T. Gillespie, Fundamentals of vehicle dynamics, SAE international, 2021.
[6] Y. Li, J. Ibanez-Guzman, Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems, IEEE Signal Processing Magazine, 37(4) (2020) 50-61.
[7] Z. Sun, Z. Wen, X. Zhao, Y. Yang, S. Li, Real-world driving cycles adaptability of electric vehicles, World Electric Vehicle Journal, 11(1) (2020) 19.
[8] J. Orlovska, C. Wickman, R. Söderberg, Naturalistic driving study for Automated Driver Assistance Systems (ADAS) evaluation in the Chinese, Swedish and American markets, Procedia CIRP, 93 (2020) 1286-1291.
[9] B. Kővári, F. Hegedüs, T. Bécsi, Design of a reinforcement learning-based lane keeping planning agent for automated vehicles, Applied Sciences, 10(20) (2020) 7171.
[10] G. Balan, S. Arumugam, S. Muthusamy, H. Panchal, H. Kotb, M. Bajaj, S.S. Ghoneim, Kitmo, An improved deep learning-based technique for driver detection and driver assistance in electric vehicles with better performance, International Transactions on Electrical Energy Systems, 2022 (2022) 1-16.
[11] X. Duan, F. Schockenhoff, A. Koch, Implementation of driving cycles based on driving style characteristics of autonomous vehicles, World ElectriWc Vehicle Journal, 13(6) (2022) 108.
[12] N.A. Chandramohan, Design and modeling of adaptive cruise control system using petri nets with fault tolerance capabilities, Purdue University, 2018.
[13] J.E. Naranjo, C. González, R. García, T. De Pedro, ACC+ Stop&go maneuvers with throttle and brake fuzzy control, IEEE Transactions on intelligent transportation systems, 7(2) (2006) 213-225.
[14] F. Schrödel, P. Herrmann, N. Schwarz, An improved multi-object adaptive cruise control approach, IFAC-PapersOnLine, 52(8) (2019) 176-181.
[15] S. Boddupalli, A.S. Rao, S. Ray, Resilient cooperative adaptive cruise control for autonomous vehicles using machine learning, IEEE Transactions on Intelligent Transportation Systems, 23(9) (2022) 15655-15672.
[16] J.H. Yang, D.J. Kim, C.C. Chung, Predictive collision avoidance control with optimized ride comfort in vehicle lateral motion control, in: 2020 20th International Conference on Control, Automation and Systems (ICCAS), IEEE, 2020, pp. 737-742.
[17] M. Belrzaeg, A.A. Ahmed, A.Q. Almabrouk, M.M. Khaleel, A.A. Ahmed, M. Almukhtar, Vehicle dynamics and tire models: An overview, World Journal of Advanced Research and Reviews, 12(1) (2021) 331-348.
[18] R. Srivastava, S. Kumar, An alternative approach for calculation of braking force of an eddy-current brake, IEEE Transactions on Magnetics, 45(1) (2009) 150-154.
[19] H.B. Pacejka, E. Bakker, The magic formula tyre model, Vehicle system dynamics, 21(S1) (1992) 1-18.
[20] Y. Huang, Y. Chen, Vehicle lateral stability control based on shiftable stability regions and dynamic margins, IEEE transactions on vehicular technology, 69(12) (2020) 14727-14738.
[21] Z. Yang, Z. Wang, M. Yan, An optimization design of adaptive cruise control system based on MPC and ADRC, Actuators, 10(6) (2021) 110.