Effects of fin arrangement on the melting process in a vertical ‎double-tube heat exchanger considering intermittent ‎boundary conditions

Document Type : Research Article

Authors

Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran

Abstract

This paper presents a numerical analysis of the solid-liquid phase change within a vertical double-tube heat exchanger containing a phase change material, considering intermittent boundary conditions with the application of the enthalpy-porosity technique. To enhance the rate of heat transfer, copper fins are integrated into the inner wall of the heat exchanger in both uniform and non-uniform arrangements. While the uniform placement of fins at equal intervals accelerates the melting process, it leads to a portion of the phase change material remaining solid at the bottom of the heat exchanger due to weakened natural convection. Conversely, positioning a greater number of fins with a non-uniform distribution at the bottom of the heat exchanger expedites the overall melting process. It is observed that compared to a finless heat exchanger and under constant boundary temperature, the complete melting time is reduced by 53%, 69%, and 75% for uniform fin distribution, and fin distribution with geometric progression q=2 and q=3, respectively. Furthermore, the findings showed that natural convection leads to a greater increase in liquid fraction during melting compared to the assumption of pure conduction. Specifically, liquid fraction increases by about 40% with natural convection and around 15% with pure conduction during the first melting period. While the decrease in liquid fraction is almost equivalent for both conditions during freezing.

Keywords

Main Subjects


[1] W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, R. Zou, Phase change material-integrated latent heat storage systems for sustainable energy solutions, Energy & Environmental Science, 14(8) (2021) 4268-4291.
[2] A.T. Muzhanje, M. Hassan, H. Hassan, Phase change material based thermal energy storage applications for air conditioning, Applied Thermal Engineering,  (2022) 118832.
[3] R.A. Lawag, H.M. Ali, Phase change materials for thermal management and energy storage: A review, Journal of Energy Storage, 55 (2022) 105602.
[4] Z. Qu, W. Li, W. Tao, Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material, International Journal of hydrogen energy, 39(8) (2014) 3904-3913.
[5] Z.A. Qureshi, H.M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review, International Journal of Heat and Mass Transfer, 127 (2018) 838-856.
[6] S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: A review, Energy Storage Materials, 25 (2020) 251-295.
[7] B.K. Choure, T. Alam, R. Kumar, A review on heat transfer enhancement techniques for PCM based thermal energy storage system, Journal of Energy Storage, 72 (2023) 108161.
[8] س.ا. فنایی, م. رضایی, The Investigation of Appendages Vortex Effect on the Main working Parameter of the Tube-finned Heat Exchanger, مهندسی مکانیک دانشگاه تبریز, 47(3) (2017) 333-338.
[9] Y. Pahamli, M. Hosseini, A. Ranjbar, R. Bahrampoury, Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger, Applied Mathematics and Computation, 316 (2018) 30-42.
[10] M.S. Mahdi, H.B. Mahood, A.F. Hasan, A.A. Khadom, A.N. Campbell, Numerical study on the effect of the location of the phase change material in a concentric double pipe latent heat thermal energy storage unit, Thermal Science and Engineering Progress, 11 (2019) 40-49.
[11] H. Xu, N. Wang, C. Zhang, Z. Qu, M. Cao, Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit, Applied Thermal Engineering, 176 (2020) 115409.
[12] J.R. Patel, M.K. Rathod, R.M. Elavarasan, Z. Said, Influence of longitudinal fin arrangement on the melting and solidification inside the triplex tube latent heat thermal storage system, Journal of Energy Storage, 46 (2022) 103778.
[13] S.S.M. Ajarostaghi, A. Amirsoleymani, M. Arıcı, A. Dolati, L. Amiri, Thermal energy storage with PCMs: A comprehensive study of horizontal shell and multi-tube systems with finned design, Journal of Energy Storage, 72 (2023) 108762.
[14] S.-Z. Tang, H.-Q. Tian, J.-J. Zhou, H. Li, Evaluation and optimization of melting performance in a horizontal thermal energy storage unit with non-uniform fins, Journal of Energy Storage, 33 (2021) 102124.
[15] A. Kumar, P. Verma, L. Varshney, An experimental and numerical study on phase change material melting rate enhancement for a horizontal semi-circular shell and tube thermal energy storage system, Journal of Energy Storage, 45 (2022) 103734.
[16] S. Seddegh, X. Wang, A.D. Henderson, A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials, Applied Thermal Engineering, 93 (2016) 348-358.
[17] X. Yang, Z. Lu, Q. Bai, Q. Zhang, L. Jin, J. Yan, Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins, Applied Energy, 202 (2017) 558-570.
[18] M. Kazemi, M. Hosseini, A. Ranjbar, R. Bahrampoury, Improvement of longitudinal fins configuration in latent heat storage systems, Renewable Energy, 116 (2018) 447-457.
[19] V. Safari, H. Abolghasemi, L. Darvishvand, B. Kamkari, Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material, Journal of Energy Storage, 37 (2021) 102458.
[20] M. Ebrahimnataj Tiji, H.I. Mohammed, R.K. Ibrahem, A. Dulaimi, J.M. Mahdi, H. Sh. Majdi, M.M. Keshtkar, P. Talebizadehsardari, Evaluation of T-shaped fins with a novel layout for improved melting in a triple-tube heat storage system, Frontiers in Energy Research, 10 (2022) 947391.
[21] N.B. Khedher, R.A. Bantan, L. Kolsi, M. Omri, Performance investigation of a vertically configured LHTES via the combination of nano-enhanced PCM and fins: Experimental and numerical approaches, International Communications in Heat and Mass Transfer, 137 (2022) 106246.
[22] D.S. Mehta, K. Solanki, M.K. Rathod, J. Banerjee, Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation, Journal of Energy Storage, 23 (2019) 344-362.
[23] A. Shahsavar, H.M. Ali, R.B. Mahani, P. Talebizadehsardari, Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system, Journal of Thermal Analysis and Calorimetry, 141 (2020) 1785-1799.
[24] F.T. Najim, H.I. Mohammed, H.M.T. Al-Najjar, L. Thangavelu, M.Z. Mahmoud, J.M. Mahdi, M.E. Tiji, W. Yaïci, P. Talebizadehsardari, Improved Melting of Latent Heat Storage Using Fin Arrays with Non-Uniform Dimensions and Distinct Patterns, Nanomaterials, 12(3) (2022) 403.
[25] H. Dai, S. Zhou, X. Li, P. Niu, S. He, W. Wang, M. Gao, Charging and discharging performances investigation for a vertical triplex-tube heat exchanger with a tapered configuration and reverse layout, Renewable Energy,  (2024) 119976.
[26] N. Zhang, X. Cao, X. Fan, L. Chen, Y. Qu, Thermal storage performance of latent heat thermal energy storage device with helical fin under realistic working conditions, Applied Thermal Engineering, 236 (2024) 121668.
[27] K. Chen, H.I. Mohammed, J.M. Mahdi, A. Rahbari, A. Cairns, P. Talebizadehsardari, Effects of non-uniform fin arrangement and size on the thermal response of a vertical latent heat triple-tube heat exchanger, Journal of Energy Storage, 45 (2022) 103723.
[28] A. Kumar, S.K. Saha, Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads, Applied Energy, 263 (2020) 114649.
[29] M.A. Basit, S. Dilshad, R. Badar, S.M. Sami ur Rehman, Limitations, challenges, and solution approaches in grid‐connected renewable energy systems, International Journal of Energy Research, 44(6) (2020) 4132-4162.
[30] M. Taghilou, F. Talati, Analytical and numerical analysis of PCM solidification inside a rectangular finned container with time-dependent boundary condition, International Journal of Thermal Sciences, 133 (2018) 69-81.
[31] L. Kalapala, J.K. Devanuri, Parametric investigation to assess the melt fraction and melting time for a latent heat storage material based vertical shell and tube heat exchanger, Solar Energy, 193 (2019) 360-371.
[32] L. Pu, S. Zhang, L. Xu, Y. Li, Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit, Applied Thermal Engineering, 166 (2020) 114753.
[33] A. Brent, V.R. Voller, K. Reid, Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numerical Heat Transfer, Part A Applications, 13(3) (1988) 297-318.
[34] S. Mat, A.A. Al-Abidi, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Enhance heat transfer for PCM melting in triplex tube with internal–external fins, Energy conversion and management, 74 (2013) 223-236.