[1] O. Oehlsen, S.I. Cervantes-Ramírez, P. Cervantes-Avilés, I.A. Medina-Velo, Approaches on ferrofluid synthesis and applications: current status and future perspectives, ACS omega, 7(4) (2022) 3134-3150.
[2] R.E. Rosensweig, Ferrohydrodynamics, Courier Corporation, 2013.
[3] H. Aminfar, M. Mohammadpourfard, Y.N. Kahnamouei, A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model, Journal of Magnetism and Magnetic Materials, 323(15) (2011) 1963-1972.
[4] H. Aminfar, M. Mohammadpourfard, S.A. Zonouzi, Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field, Journal of Magnetism and Magnetic materials, 327 (2013) 31-42.
[5] M. Sheikholeslami, M. Seyednezhad, Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM, International Journal of Heat and Mass Transfer, 114 (2017) 1169-1180.
[6] M. Mohammadpourfard, H. Aminfar, S. Ahangar Zonouzi, Numerical investigation of the magnetic field effects on the entropy generation and heat transfer in a nanofluid filled cavity with natural convection, Heat Transfer—Asian Research, 46(5) (2017) 409-433.
[7] G. Ashwinkumar, C. Sulochana, S. Samrat, Effect of the aligned magnetic field on the boundary layer analysis of magnetic-nanofluid over a semi-infinite vertical plate with ferrous nanoparticles, Multidiscipline Modeling in Materials and Structures, 14(3) (2018) 497-515.
[8] M.B. Gerdroodbary, M. Sheikholeslami, S.V. Mousavi, A. Anazadehsayed, R. Moradi, The influence of non-uniform magnetic field on heat transfer intensification of ferrofluid inside a T-junction, Chemical Engineering and Processing-Process Intensification, 123 (2018) 58-66.
[9] A. Khosravi, M. Malekan, M.E. Assad, Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector, Renewable Energy, 134 (2019) 54-63.
[10] P.S. Szabo, W.-G. Früh, The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field, Journal of Magnetism and Magnetic Materials, 447 (2018) 116-123.
[11] T. Javed, M.A. Siddiqui, Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source, International Journal of Thermal Sciences, 125 (2018) 419-427.
[12] W. Wrobel, E. Fornalik-Wajs, J. Szmyd, Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure, International Journal of Heat and Fluid Flow, 31(6) (2010) 1019-1031.
[13] M. Lee, Y.-J. Kim, Effect of non-uniform magnetic fields on the characteristics of ferrofluid flow in a square enclosure, Journal of Magnetism and Magnetic Materials, 506 (2020) 166697.
[14] S.Y. Motlagh, E. Golab, A.N. Sadr, Two-phase modeling of the free convection of nanofluid inside the inclined porous semi-annulus enclosure, International Journal of Mechanical Sciences, 164 (2019) 105183.
[15] H. Soltanipour, A. Gharegöz, M.B. Oskooee, Numerical study of magnetic field effect on the ferrofluid forced convection and entropy generation in a curved pipe, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(3) (2020) 135.
[16] S. Banik, A.S. Mirja, N. Biswas, R. Ganguly, Entropy analysis during heat dissipation via thermomagnetic convection in a ferrofluid-filled enclosure, International Communications in Heat and Mass Transfer, 138 (2022) 106323.
[17] K. Ayoubi Ayoubloo, S. Yazdani, M. Sheremet, O. Younis, M. Ghalambaz, Ferro-hydrodynamic induced convection flow and heat transfer of nanofluids in a corrugated wall enclosure, Journal of Taibah University for Science, 17(1) (2023) 2215675.
[18] B. Iftikhar, M.A. Siddiqui, T. Javed, Computational analysis of heat transfer via heatlines for MHD natural convection ferrofluid flow inside the U-shaped cavity, The European Physical Journal Plus, 138(2) (2023) 164.
[19] L. Shi, W. Tao, N. Zheng, T. Zhou, Z. Sun, Numerical study of convective heat transfer and particle distribution subject to magneto-static field in a square cavity, International Journal of Thermal Sciences, 185 (2023) 108081.
[20] D.D. Dixit, A. Pattamatta, Effect of uniform external magnetic-field on natural convection heat transfer in a cubical cavity filled with magnetic nano-dispersion, International Journal of Heat and Mass Transfer, 146 (2020) 118828.
[21] M. Goodarzi, M. Safaei, K. Vafai, G. Ahmadi, M. Dahari, S. Kazi, N. Jomhari, Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model, International Journal of Thermal Sciences, 75 (2014) 204-220.
[22] H. Abdi, S.Y. Motlagh, H. Soltanipour, Study of magnetic nanofluid flow in a square cavity under the magnetic field of a wire carrying the electric current in turbulence regime, Results in Physics, 18 (2020) 103224.
[23] H. Sajjadi, M. Beigzadeh Abbassi, G.R. Kefayati, Lattice Boltzmann simulation of turbulent natural convection in a square cavity using Cu/water nanofluid, Journal of Mechanical Science and Technology, 27 (2013) 2341-2349.
[24] A.K. Kareem, S. Gao, A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder, International Communications in Heat and Mass Transfer, 90 (2018) 44-55.
[25] Y. Cao, Y. Bai, J. Du, S. Rashidi, A computational fluid dynamics investigation on the effect of the angular velocities of hot and cold turbulator cylinders on the heat transfer characteristics of nanofluid flows within a porous cavity, Journal of Energy Resources Technology, 142(11) (2020) 112104.
[26] H. Ghodsinezhad, M. Sharifpur, J.P. Meyer, Experimental investigation on cavity flow natural convection of Al2O3–water nanofluids, International Communications in Heat and Mass Transfer, 76 (2016) 316-324.
[27] A.P. Patel, D. Bhatnagar, R.S. Kumar, S. Prabhu, Numerical study on turbulent natural convection and radiation heat transfer of nanofluids in a differentially heated square enclosure, Journal of Thermal Analysis and Calorimetry, (2020) 1-10.
[28] R. Harish, R. Sivakumar, Turbulent thermal convection of nanofluids in cubical enclosure using two-phase mixture model, International Journal of Mechanical Sciences, 190 (2021) 106033.
[29] R. Harish, R. Sivakumar, Effects of nanoparticle dispersion on turbulent mixed convection flows in cubical enclosure considering Brownian motion and thermophoresis, Powder Technology, 378 (2021) 303-316.
[30] E. Mignot, W. Brevis, Coherent turbulent structures within open-channel lateral cavities, Journal of Hydraulic Engineering, 146(2) (2020) 04019066.
[31] G. Janiga, Large-eddy simulation and 3D proper orthogonal decomposition of the hydrodynamics in a stirred tank, Chemical Engineering Science, 201 (2019) 132-144.
[32] P.S. Mahapatra, S. Chatterjee, A. Mukhopadhyay, N.K. Manna, K. Ghosh, Proper orthogonal decomposition of thermally-induced flow structure in an enclosure with alternately active localized heat sources, International Journal of Heat and Mass Transfer, 94 (2016) 373-379.
[33] B. Podvin, A. Sergent, Proper orthogonal decomposition investigation of turbulent Rayleigh-Bénard convection in a rectangular cavity, Physics of Fluids, 24(10) (2012).
[34] S.Y. Motlagh, S. Taghizadeh, POD analysis of low Reynolds turbulent porous channel flow, International Journal of Heat and Fluid Flow, 61 (2016) 665-676.
[35] E. Tzirtzilakis, M. Xenos, Biomagnetic fluid flow in a driven cavity, Meccanica, 48 (2013) 187-200.
[36] R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of magnetism and magnetic materials, 252 (2002) 370-374.
[37] J. Buongiorno, Convective Transport in Nanofluids, Journal of Heat Transfer, 128(3) (2005) 240-250.
[38] M.I. Shliomis, Convective Instability of Magnetized Ferrofluids: Influence of Magnetophoresis and Soret Effect, in: W. Köhler, S. Wiegand (Eds.) Thermal Nonequilibrium Phenomena in Fluid Mixtures, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 355-371.
[39] M.I. Shliomis, B.L. Smorodin, Convective instability of magnetized ferrofluids, Journal of Magnetism and Magnetic Materials, 252 (2002) 197-202.
[40] J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic experiment, Monthly weather review, 91(3) (1963) 99-164.
[41] S.Y. Motlagh, H. Soltanipour, Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno's two-phase model, International Journal of Thermal Sciences, 111 (2017) 310-320.
[42] H. Soltanipour, Two-phase simulation of magnetic field effect on the ferrofluid forced convection in a pipe considering Brownian diffusion, thermophoresis, and magnetophoresis, The European Physical Journal Plus, 135(9) (2020) 1-23.
[43] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, 11(2) (1998) 151-170.
[44] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of heat and Mass transfer, 43(19) (2000) 3701-3707.
[45] J.C. Maxwell, A treatise on electricity and magnetism, Clarendon press, 1873.
[46] H. Weller, C. Greenshields, C. de Rouvray, The OpenFOAM Foundation Ltd, OpenFOAM.
https://openfoam. org, (2016).
[47] J. Jeong, F. Hussain, On the identification of a vortex, Journal of fluid mechanics, 285 (1995) 69-94.
[48] M. Farge, G. Pellegrino, K. Schneider, Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets, Physical Review Letters, 87(5) (2001) 054501.
[49] J.L. Lumley, The structure of inhomogeneous turbulent flows, Atmospheric turbulence and radio wave propagation, (1967) 166-178.
[50] C. Ho, W. Liu, Y. Chang, C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Sciences, 49(8) (2010) 1345-1353.
[51] G.A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure, International Journal of Thermal Sciences, 66 (2013) 51-62.
[52] K.W. Song, T. Tagawa, Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field, International Journal of Thermal Sciences, 125 (2018) 52-65.
[53] F. Ampofo, T. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, International Journal of Heat and Mass Transfer, 46(19) (2003) 3551-3572.
[54] R. Kumar, A. Dewan, A study of LES–SGS closure models applied to a square buoyant cavity, International Journal of Heat and Mass Transfer, 98 (2016) 164-175.
[55] R. Puragliesi, E. Leriche, Proper orthogonal decomposition of a fully confined cubical differentially heated cavity flow at Rayleigh number Ra= 109, Computers & fluids, 61 (2012) 14-20.
[56] L.-H. Feng, J.-J. Wang, C. Pan, Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control, Physics of Fluids, 23(1) (2011).