[1] R. Blondeau, Metallurgy and mechanics of welding: processes and industrial applications, John Wiley & Sons, 2013.
[2] M. Torkamany, M. Hamedi, F. Malek, J. Sabbaghzadeh, The effect of process parameters on keyhole welding with a 400 W Nd: YAG pulsed laser, Journal of Physics D: Applied Physics, 39(21) (2006) 4563-4567.
[3] D. Rosenthal, The theory of moving sources of heat and its application of metal treatments, Transactions of ASME, 68 (1946) 849-866.
[4] M. Frewin, D. Scott, Finite element model of pulsed laser welding, WELDING JOURNAL, 78 (1999) 15-s-22-s.
[5] A. Mahrle, J. Schmidt, The influence of fluid flow phenomena on the laser beam welding process, International Journal of heat and fluid flow, 23(3) (2002) 288-297.
[6] S. Tsirkas, P. Papanikos, T. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens, Journal of materials processing technology, 134(1) (2003) 59-69.
[7] M. Sunar, B. Yilbas, K. Boran, Thermal and stress analysis of a sheet metal in welding, Journal of Materials Processing Technology, 172(1) (2006) 123-129.
[8] J. Sabbaghzadeh, M. Azizi, M.J. Torkamany, Numerical and experimental investigation of seam welding with a pulsed laser, Optics & Laser Technology, 40(2) (2008) 289-296.
[9] B. Yilbas, A. Arif, B.A. Aleem, Laser welding of low carbon steel and thermal stress analysis, Optics & Laser Technology, 42(5) (2010) 760-768.
[10] K. Balasubramanian, N.S. Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy, Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet, Advances in Production Engineering & Management, 3(2) (2008) 93-105.
[11] N.S. Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy, Some studies on weld bead geometries for laser spot welding process using finite element analysis, Materials & Design, 34 (2012) 412-426.
[12] J. Wilson, J.F.B. Hawkes, Lasers : principles and applications, Prentice Hall, New York, 1987.
[13] E. Assuncao, S. Williams, Comparison of continuous wave and pulsed wave laser welding effects, Optics and lasers in Engineering, 51(6) (2013) 674-680.
[14] K. Kim, J. Lee, H. Cho, Analysis of pulsed Nd: YAG laser welding of AISI 304 steel, Journal of Mechanical Science and Technology, 24(11) (2010) 2253-2259.
[15] Z. Sun, J. Ion, Laser welding of dissimilar metal combinations, Journal of Materials Science, 30(17) (1995) 4205-4214.
[16] R.B. Jose, M.d.N. de Rossi Wagner, M. David, V.J. de Almeida Ivan Alves, N. Dias, Pulsed Nd: YAG laser welding of AISI 304 to AISI 420 stainless steels, Opt Laser Eng, 45 (2007) 960-966.
[17] M. Jafarzadegan, A. Abdollah-Zadeh, A. Feng, T. Saeid, J. Shen, H. Assadi, Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel, Journal of Materials Science & Technology, 29(4) (2013) 367-372.
[18] A. Mackwood, R. Crafer, Thermal modelling of laser welding and related processes: a literature review, Optics & Laser Technology, 37(2) (2005) 99-115.
[19] E. Anawa, A. Olabi, Using Taguchi method to optimize welding pool of dissimilar laser-welded components, Optics & Laser Technology, 40(2) (2008) 379-388.
[20] M. Jiang, N. Jiang, X. Chen, S. Ma, Y. Chen, Y. Chen, Z. Lei, Experimental and numerical investigation of single-pass laser welding of 20 mm-thick high-strength steel under reduced ambient pressure, Journal of Materials Research and Technology, 15 (2021) 2317-2331.
[21] S. Yan, Z. Meng, C. Tan, X. Song, G. Wang, Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel, Optics & Laser Technology, 145 (2022).
[22] A.K. Unni, V. Muthukumaran, Modeling of heat transfer, fluid flow, and weld pool dynamics during keyhole laser welding of 316 LN stainless steel using hybrid conical-cylindrical heat source, (2022).
[23] M. Masoumi, Astudy on the structure , mechanical strength and failure behavior of laser spot welds of carbon steel sheets, Amirkabir University of Technology, 2010.
[24] X. Zhu, Y. Chao, Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, Journal of materials processing technology, 146(2) (2004) 263-272.
[25] S. Bag, A. Trivedi, A. De, Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source, International Journal of Thermal Sciences, 48(10) (2009) 1923-1931.
[26] W. Chang, S.-J. Na, A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining, Journal of materials processing technology, 120(1-3) (2002) 208-214.
[27] B. Tam, M. Khan, Y. Zhou, Mechanical and functional properties of laser-welded Ti-55.8 Wt Pct Ni nitinol wires, Metallurgical and Materials Transactions A, 42(8) (2011) 2166-2175.
[28] J.R. Chukkan, M. Vasudevan, S. Muthukumaran, R.R. Kumar, N. Chandrasekhar, Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation, Journal of Materials Processing Technology, 219 (2015) 48-59.
[29] X. Shen, W. Liu, S. Lei, Three-dimensional thermal analysis for laser assisted milling of silicon nitride ceramics using FEA, in: ASME International Mechanical Engineering Congress and Exposition, 2005, pp. 445-452.