[1] T. Noda, Application of cast gamma TiAl for automobiles, Intermetallics, 6(7) (1998) 709-713.
[2] V. V. Kurbatkina, P. Borovinskaya, A.A. Gromov, E.A. Levashov, Y.M. Maksimov, A.S. Mukasyan, A.S. Rogachev, Titanium Aluminides, Elsevier, Amsterdam, 2017.
[3] C. Weeks, Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications, (2005).
[4] P.A. Bartolotta, D.L. Krause, Titanium Aluminide Applications in the High Speed Civil Transport, NASA/TM-1999-209071, 1999.
[5] H.-W. Liu, K.P. Plucknett, Titanium aluminide (Ti-48Al) powder synthesis, size refinement and sintering, Advanced Powder Technology, 28(1) (2017) 314-323.
[6] H. Clemens, W. Smarsly, Light-Weight Intermetallic Titanium Aluminides – Status of Research and Development, Advanced Materials Research, 278 (2011) 551-556.
[7] A. Duarte, F. Viana, M.C.M.H. Santos, As-cast titanium aluminides microstructure modification, Materials Research, 2(3) (1999) 191-195.
[8] A. Yumoto, F. Hiroki, I. Shiota, N. Niwa, In situ synthesis of titanium-aluminides in coating with supersonic free-jet PVD using Ti and Al nanoparticles, Surface and Coatings Technology, 169-170 (2003) 499-503.
[9] L. Wang, Y. Zhang, X. Hua, C. Shen, F. Li, Y. Huang, Y. Ding, P. Zhang, Q. Lu, T. Zhang, J. Shang, Twin-wire plasma arc additive manufacturing of the Ti–45Al titanium aluminide: Processing, microstructures and mechanical properties, Intermetallics, 136 (2021) 107277.
[10] I. Csaki, P. Moldovan, G. Popescu, Powder Metallurgy Processing of Al/TiAl(3)+Al(2)O(3), 2011.
[11] S.A. Cohen, C. Aliaga, C. Servant, Y. Bigay, TiAl Based Alloys Produced Using Elemental & Prealloyed Powder Metallurgy, Reactive Sintering, Modelisation and Transformations, Journal de Physique IV (Proceedings), 6 (1996).
[12] B. Liu, Y. Liu, Powder metallurgy titanium aluminide alloys, in: M. Qian, F.H. Froes (Eds.) Titanium Powder Metallurgy, Butterworth-Heinemann, Boston, 2015, pp. 515-531.
[13] G.P. Zhang, Q.S. Mei, F. Chen, Y. Ma, X.M. Mei, J.Y. Li, X.F. Ruan, L. Wan, Production of a high strength Al/(TiAl3+Al2O3) composite from an Al-TiO2 system by accumulative roll-bonding and spark plasma sintering, Materials Science and Engineering: A, 752 (2019) 192-198.
[14] A. Kamali, M. Hadavi, H. Razavizadeh, J. Baboee, Production of TiAl(Ti3Al)/Al2O3 Nanocomposite, Journal of nano research, 3 (2008) 7-14.
[15] G.P. Zhang, Q.S. Mei, C.L. Li, F. Chen, X.M. Mei, J.Y. Li, X.F. Ruan, Fabrication and properties of Al-TiAl3-Al2O3 composites with high content of reinforcing particles by accumulative roll-bonding and spark plasma sintering, Materials Today Communications, 24 (2020) 101060.
[16] N.J. Welham, D.J. Llewellyn, Formation of nanometric hard materials by cold milling, Journal of the European Ceramic Society, 19(16) (1999) 2833-2841.
[17] F.H. Froes, O.N. Senkov, E.G. Baburaj, Synthesis of nanocrystalline materials — an overview, Materials Science and Engineering: A, 301(1) (2001) 44-53.
[18] N.J. Welham, Mechanical activation of the solid-state reaction between Al and TiO2, Materials Science and Engineering: A, 255(1) (1998) 81-89.
[19] Z.W. Li, W. Gao, D.L. Zhang, Z.H. Cai, High temperature oxidation behaviour of a TiAl–Al2O3 intermetallic matrix composite, Corrosion Science, 46(8) (2004) 1997-2007.
[20] R. Khoshhal, M. Soltanieh, M. Mirjalili, Formation and growth of titanium aluminide layer at the surface of titanium sheets immersed in molten aluminum, Iranian Journal of Materials Science and Engineering, 7 (2010) 24-31.
[21] A.R. Kamali, H. Razavizadeh, S.M.M. Hadavi, A process for production of titanium aluminide: Reaction mechanism, International Journal of Self-Propagating High-Temperature Synthesis, 16(3) (2007) 119-124.
[22] A. Školáková, P. Salvetr, J. Leitner, T. Lovaši, P. Novák, Formation of Phases in Reactively Sintered TiAl3 Alloy, Molecules, 25(8) (2020).
[23] H. Sina, S. Iyengar, Reactive synthesis and characterization of titanium aluminides produced from elemental powder mixtures, Journal of Thermal Analysis and Calorimetry, 122(2) (2015) 689-698.
[24] T. Wang, R.Y. Liu, M.L. Zhu, J.S. Zhang, Activation energy of self-heating process Studied by DSC, Journal of Thermal Analysis and Calorimetry, 70(2) (2002) 507-519.
[25] S.-H. Lee, J.-H. Lee, Y.-H. Lee, D. Hyuk Shin, Y.-S. Kim, Effect of heating rate on the combustion synthesis of intermetallics, Materials Science and Engineering: A, 281(1) (2000) 275-285.
[26] G. Jiang, H. Zhuang, W. Li, Mechanistic investigation of the field-activated combustion synthesis (FACS) of tungsten carbide with or without nickel additive, Journal of Materials Science, 38 (2003) 3559-3565.
[27] J.-G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Materials Science and Engineering: A, 379(1) (2004) 164-172.
[28] G.P. Chaudhari, V.L. Acoff, Titanium aluminide sheets made using roll bonding and reaction annealing, Intermetallics, 18(4) (2010) 472-478.
[29] R.W. Olesinski, G.J. Abbaschian, The C-Si (Carbon-Silicon) system, Bulletin of Alloy Phase Diagrams, 5(5) (1984) 486-489.
[31] L. Yang, Mi. Bing Xue , L. Lin, Jun Huang Hong , P.L. Xiao, G.Y. Xiao, Formation Sequence of Interface Intermetallic Phases of Cold Rolling Cu/Al Clad Metal Sheet in Annealing Process, Materials Science Forum. Trans Tech Publications, 749 (2013) 600-605.
[32] R. Khoshhal, M. Soltanieh, s. Boutorabi, Formation Mechanism and Synthesis of Fe-TiC/Al2O3 Composite by Ilmenite, Aluminum and Graphite, International Journal of Refractory Metals and Hard Materials, 45 (2014).
[33] R. Khoshhal, M. Soltanieh, M.A. Boutorabi, Investigation on the reactions sequence between synthesized ilmenite and aluminum, Journal of Alloys and Compounds, 628 (2015) 113-120.
[34] H.-Z. Kang, C.-T. Hu, Swelling behavior in reactive sintering of Fe–Al mixtures, Materials Chemistry and Physics, 88(2) (2004) 264-272.
[35] M.M. Verdian, Synthesis of TiAl3-Al2O3 Composite Particles by Chemical Reactions in Molten Salts, Materials and Manufacturing Processes, 25(9) (2010) 953-955.
[36] D. Bozic, J. Stasic, B. Dimcic, M. Vilotijevic, V. Rajkovic, Multiple strengthening mechanisms in nanoparticle-reinforced copper matrix composites, Bulletin of Materials Science, 34(2) (2011) 217-226.
[37] Y. Alshammari, F. Yang, L. Bolzoni, Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material, Journal of the Mechanical Behavior of Biomedical Materials, 95 (2019).
[38] Y. Zhao, W. Wang, K. Yan, C. Liu, J. Zou, Microstructure and properties of Cu/Ti laser welded joints, Journal of Materials Processing Technology, 257 (2018) 244-249.
[39] L. Fowler, N. Masia, L.C. LA, L. Chown, H. Engqvist, S. Norgren, C. Öhman-Mägi, Development of Antibacterial Ti-Cux Alloys for Dental Applications: Effects of Ageing for Alloys with Up to 10 wt% Cu, Materials (Basel), 3(12) ( 2019 ) 23.
[40] Y. Wei, J. Li, J. Xiong, F. Zhang, Investigation of interdiffusion and intermetallic compounds in Al-Cu join produced by continuous drive friction welding, Engineering Science and Technology, an International Journal, 19 (2015).
[41] H.J.T. Ellingham, Reducibility of oxides and sulphides in metallurgical processes, Society of Chemical Industry, 1994.