[1] X.-F. Pang, B. Deng, The changes of macroscopic features and microscopic structures of water under influence of magnetic field, Physica B: Condensed Matter, 403(19) (2008) 3571-3577.
[2] S. Alangar, Effect of boiling surface vibration on heat transfer, Heat and Mass Transfer, 53(1) (2017) 73-79.
[3] T.-B. Chang, Z.-L. Wang, Experimental investigation into effects of ultrasonic vibration on pool boiling heat transfer performance of horizontal low-finned U-tube in TiO2/R141b nanofluid, Heat and Mass Transfer, 52(11) (2016) 2381-2390.
[4] H.J. Kim, J.H. Jeong, Numerical Analysis of Experimental Observations for Heat Transfer Augmentation by Ultrasonic Vibration, Heat Transfer Engineering, 27(2) (2006) 14-22.
[5] K.F. Jongdoc Park, Qiusheng Liu, Critical heat flux phenomena depending on pre-pressurization in transient heat input, in: AIP, 2017, pp. 080005.
[6] Y. Li, K. Fukuda, Q. Liu, Steady and Transient CHF in Subcooled Pool Boiling of Water under Sub-atmospheric Pressures, Marine Engineering, 52(2) (2017) 245-250.
[7] H. Moghadasi, H. Fathalizadeh, A. Mehdikhani, H. Saffari, Surface Modification Utilizing Photolithography Process for Pool Boiling Enhancement: An Experimental Study, Heat Transfer Engineering, 43(12) (2022) 1008-1024.
[8] M. Shojaeian, M. Yildizhan, Ö. Coşkun, E. Ozkalay, Y. Tekşen, M. Gulgun, H. Acar, A. Kosar, Investigation of change in surface morphology of heated surfaces upon pool boiling of magnetic fluids under magnetic actuation, Materials Research Express, 3 (2016) 096102.
[9] A. Walunj, S. Alangar, Experimental Investigation on Transient Pool Boiling Heat Transfer from Rough Surface and Heat Transfer Correlations, International Journal of Heat and Technology, 37 (2019) 545-554.
[10] A. Walunj, A. Sathyabhama, Transient CHF enhancement in high pressure pool boiling on rough surface, Chemical Engineering and Processing - Process Intensification, 127 (2018) 145-158.
[11] A. Ayoobi, A.F. Khorasani, M. Ramezanizadeh, A. Afshari, Experimental investigation of transient pool boiling characteristics of Fe3O4 ferrofluid in comparison with deionized water, Applied Thermal Engineering, 179 (2020) 115642.
[12] L. Cheng, G. Xia, Q. Li, J. Thome, Fundamental Issues, Technology Development And Challenges Of Boiling Heat Transfer, Critical Heat Flux And Two-Phase Flow Phenomena With Nanofluids, Heat Transfer Engineering, 40 (2018).
[13] L. Fan, J. Li, D.-Y. Li, L. Zhang, Z.-T. Yu, K.-F. Cen, The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids, International Journal of Thermal Sciences, 91 (2015).
[14] M. Mohammadpourfard, H. Aminfar, M. Sahraro, Numerical simulation of nucleate pool boiling on the horizontal surface for ferrofluid under the effect of non-uniform magnetic field, Heat and Mass Transfer, 50(8) (2014) 1167-1176.
[15] P. Naphon, Effect of Magnetic Fields on the Boiling Heat Transfer Characteristics of Nanofluids, International Journal of Thermophysics, 36(10) (2015) 2810-2819.
[16] J. Ishimoto, M. Okubo, S. Kamiyama, M. Higashitani, Bubble Behavior in Magnetic Fluid under a Nonuniform Magnetic Field, JSME International Journal Series B, 38(3) (1995) 382-387.
[17] S.-D.O.H.-Y. Kwak, A Study of Bubble Behavior and Boiling Heat Transfer Enhancement under Electric Field, Heat Transfer Engineering, 21(4) (2000) 33-45.
[18] P.S. Lykoudis, Bubble growth in the presence of a magnetic field, International Journal of Heat and Mass Transfer, 19(12) (1976) 1357-1362.
[19] L. Hołysz, A. Szcześ, E. Chibowski, Effects of static magnetic field on water and electrolyte solutions, Journal of colloid and interface science, 316 (2008) 996-1002.
[20] H. Habibi Khoshmehr, A. Saboonchi, M.B. Shafii, N. Jahani, The study of magnetic field implementation on cylinder quenched in boiling ferro-fluid, Applied Thermal Engineering, 64(1) (2014) 331-338.
[21] A.H. Mahmoudi, E. Abu-Nada, Combined Effect of Magnetic Field and Nanofluid Variable Properties on Heat Transfer Enhancement in Natural Convection, Numerical Heat Transfer, Part A: Applications, 63(6) (2013) 452-472.
[22] A. Abdollahi, M.R. Salimpour, N. Etesami, Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid, Applied Thermal Engineering, 111 (2016).
[23] A.R. Ayoobi, A.R. Faghih Khorasani, Study of transient pool boiling of deionized water in two modes of presence and absence of a magnetic field, Journal of Solid and Fluid Mechanics, 10(1) (2020) 209-221.
[24] P. S.LYKOUDIS, Bubble growth in the presence of a magnetic field, Heat and Mass Transfer, 19 (1976) 1357-1362.
[25] A. Vatani, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermomagnetic Convection Around a Current-Carrying Wire in Ferrofluid, Journal of Heat Transfer, 139 (2017).
[26] Q. Li, Y. Xuan, Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field, Experimental Thermal and Fluid Science, 33(4) (2009) 591-596.
[27] W.M. Frix, G.G. Karady, B.A. Venetz, Comparison of calibration systems for magnetic field measurement equipment, IEEE Transactions on Power Delivery, 9(1) (1994) 100-108.
[28] T. Henry, Ohm's Law, Electrical Math and Voltage Drop Calculations, Henry Publications, 1992.
[29] L. Weiner, P. Chiotti, H.A. Wilhelm, U.S.A.E. Commission, A. Laboratory, Temperature Dependence of Electrical Resistivity of Metals, United States Atomic Energy Commission, Technical Information Service, 1952.
[30] R.J. Moffat, Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science, 1(1) (1988) 3-17.
[31] M. Yaghoubi, K. Hirbodi, M.R. Nematollahi, S. Bashiri, Experimental Study of Subcooled Pool Boiling around a Circular Rough Cylinder, AUT Journal of Mechanical Engineering, 1(1) (2017) 21-28.
[32] N. Zuber, Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, International Journal of Heat and Mass Transfer, 6(1) (1963) 53-78.
[33] I. Pioro, Experimental Evaluation of Constants for the Rohsenow Pool Boiling Correlation, International Journal of Heat and Mass Transfer, 42 (1998) 2003-2013.
[34] J.P. Holman, Heat Transfer, McGraw-Hill, 2002.
[35] M. Joyce, Chapter 7 - Cooling and Thermal Concepts, in: M. Joyce (Ed.) Nuclear Engineering, Butterworth-Heinemann, 2018, pp. 129-166.
[36] A. Sakurai, M. Shiotsu, K. Hata, A General Correlation for Pool Film Boiling Heat Transfer From a Horizontal Cylinder to Subcooled Liquid: Part 2—Experimental Data for Various Liquids and Its Correlation, Journal of Heat Transfer, 112(2) (1990) 441-450.
[37] Y.-H. Zhao, T. Masuoka, T. Tsuruta, Theoretical studies on transient pool boiling based on microlayer model, International Journal of Heat and Mass Transfer, 45(21) (2002) 4325-4331.
[38] E.J.L. Toledo, T.C. Ramalho, Z.M. Magriotis, Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models, Journal of Molecular Structure, 888(1) (2008) 409-415.
[39] J.V. Stewart, Intermediate Electromagnetic Theory, World Scientific, 2001.