[1] R. Kadambur, P. Kotecha, Multi-level production planning in a petrochemical industry using elitist Teaching-Learning-Based-Optimization, Expert Syst. Appl., 42(1) (2015) 628-641.
[2] C.E. Escobar-Toledo, Industrial petrochemical production planning and expansion: A multi-objective linear programming approach, Top, 9(1) (2001) 77-89.
[3] A. Almanssoor, Planning of Petrochemical Industry under Environmental Risk and Safety Considerations, in, UWSpace, (2008) 6-18.
[4] S. Petchrompo, A.K. Parlikad, Heuristic optimisation for multi-asset intervention planning in a petrochemical plant, Procedia Manufacturing, 16 (2018) 208-214.
[5] G. Al-Sharrah, I. Alatiqi, A. Elkamel, Planning an Integrated Petrochemical Business Portfolio for Long-Range Financial Stability, 41(11) (2002) 2798-2804.
[6] R. Kadambur, P. Kotecha, Optimal production planning in a petrochemical industry using multiple levels, Computers & Industrial Engineering, 100 (2016) 133-143.
[7] Y. Özcanli, F. Kosovali Çavuş, M. Beken, Comparison of Mechanical Properties and Artificial Neural Networks Modeling of PP/PET Blends, 130(1) (2016) 444-446.
[8] N.K. Jain, V.K. Jain, Computer Aided Process Planning for Agile Manufacturing Environment, in: A. Gunasekaran (Ed.) Agile Manufacturing: The 21st Century Competitive Strategy, Elsevier Science Ltd, Oxford, (2001), 515-534.
[9] T. Gupta, B. K Ghosh, A survey of expert systems in manufacturing and process planning, Computers in Industry, 11 (1989) 195-204.
[10] T. Gupta, An expert system approach in process planning: Current development and its future, Computers & Industrial Engineering, 18(1) (1990) 69-80.
[11] M. Wang, H. Walker, Creation of an intelligent process planning system within the relational DBMS software environment, Computers in Industry, 13(3) (1989) 215-228.
[12] T.K. Gupta, K. Raza, Chapter 7 - Optimization of ANN Architecture: A Review on Nature-Inspired Techniques, in: N. Dey, S. Borra, A.S. Ashour, F. Shi (Eds.) Machine Learning in Bio-Signal Analysis and Diagnostic Imaging, Academic Press, (2019), 159-182.
[13] S.B. Ashrafi, M. Anemangely, M. Sabah, M.J. Ameri, Application of hybrid artificial neural networks for predicting rate of penetration (ROP): A case study from Marun oil field, Journal of Petroleum Science and Engineering, 175 (2019) 604-623.
[14] A. Taik, A. Sedki, D. Ouazar, Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting, Mathematical Modelling of Natural Phenomena, 5(7) (2010) 132-138.
[15] J.F. Wang, W.L. Kang, J.L. Zhao, K.Y. Chu, A simulation approach to the process planning problem using a modified particle swarm optimization, 11(2) (2016) 77-92.
[16] M.A. Wilhelm, A.E. Smith, B. Bidanda, Process Planning Using An Integrated Expert System And Neural Network Approach, Corpus ID: 15612920 (1998).
[17] R. Kadambur, P. Kotecha, Constraint Programming Based Production Planning in a Petrochemical Industry, 4(1) (2014) 81-87.
[18] G.K. Al-sharrah, G. Hankinson, A. Elkamel, Decision-making for Petrochemical Planning Using Multiobjective and Strategic Tools, Chemical Engineering Research and Design, 84(11) (2006) 1019-1030.
[20] R.K. Phanden, A. Jain, R. Verma, Integration of process planning and scheduling: a state-of-the-art review, International Journal of Computer Integrated Manufacturing, 24(6) (2011) 517-534.
[21] K.Y. Al-Qahtani, A. Elkamel, Planning and Integration of Refinery and Petrochemical Operations, Wiley, 2011.
[22] S. Mitin, P. Bochkarev, Mathematical modelling in the computer-aided process planning, 2016.
[23] A. Sedki, D. Ouazar, Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting, Published online by Cambridge University Press, 5(7) (2010).
[24] R. Kadambur, P. Kotecha, Multi-level production planning in a petrochemical industry using elitist Teaching–Learning-Based-Optimization, Expert Systems with Applications, 42(1) (2015) 628-641.
[25] R.G. Siwi, F. Aljumah, J. Li, X. Xao, Optimal Strategic Planning of Integrated Petroleum and Petrochemical Supply Chain, in: A. Friedl, J.J. Klemeš, S. Radl, P.S. Varbanov, T. Wallek (Eds.) Computer Aided Chemical Engineering, Elsevier, 28 (2018), 1201-1206.
[26] Y.W. Guo, W.D. Li, A.R. Mileham, G.W. Owen, Optimisation of integrated process planning and scheduling using a particle swarm optimisation approach, International Journal of Production Research, 47(14) (2009) 3775-3796.
[27] H. Kwon, B. Lyu, K. Tak, J. Lee, I. Moon, Optimization of Petrochemical Process Planning using Naphtha Price Forecasting and Process Modeling, in: K.V. Gernaey, J.K. Huusom, R. Gani (Eds.) Computer Aided Chemical Engineering, Elsevier, (2015), 2039-2044.
[28] Q.T. Pham, T. Kim Dung Phan, Apply neural network for improving production planning at Samarang petrol mine, (2016).
[29] Y.-M. Han, Z.-Q. Geng, Q.-X. Zhu, Energy optimization and prediction of complex petrochemical industries using an improved artificial neural network approach integrating data envelopment analysis, Energy Conversion and Management, 124 (2016) 73-83.