[1] G.A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S.F. Abera, G. Abyu, M. Ahmed, B. Aksut, T. Alam, K. Alam, Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015, Journal of the American College of Cardiology, 70(1) (2017) 1-25.
[2] C. Jin, B. Mao, B. Li, Y. Feng, D. Wu, J. Xie, Y. Liu, Hemodynamic Study Of Coronary Artery Aneurysms, Journal of Mechanics in Medicine and Biology, 20(03) (2020) 2050012.
[3] J.B. Gordon, A.M. Kahn, J.C. Burns, When children with Kawasaki disease grow up: Myocardial and vascular complications in adulthood, Journal of the American College of Cardiology, 54(21) (2009) 1911-1920.
[4] Y. Kuramochi, T. Ohkubo, N. Takechi, D. Fukumi, Y. Uchikoba, S. Ogawa, Hemodynamic factors of thrombus formation in coronary aneurysms associated with Kawasaki disease, Pediatrics International, 42(5) (2000) 470-475.
[5] T. Fan, Z. Zhou, W. Fang, W. Wang, L. Xu, Y. Huo, Morphometry and hemodynamics of coronary artery aneurysms caused by atherosclerosis, Atherosclerosis, 284 (2019) 187-193.
[6] M. Abbasian, M. Shams, Z. Valizadeh, A. Moshfegh, A. Javadzadegan, S. Cheng, Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation, Computer methods and programs in biomedicine, 186 (2020) 105185.
[7] K. Haldar, Effects of the shape of stenosis on the resistance to blood flow through an artery, Bulletin of Mathematical Biology, 47(4) (1985) 545-550.
[8] S.P. Shupti, M.G. Rabby, M. Molla, Rheological behavior of physiological pulsatile flow through a model arterial stenosis with moving wall, Journal of Fluids, Article ID546716, (2015).
[9] B.M. Johnston, P.R. Johnston, S. Corney, D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of biomechanics, 37(5) (2004) 709-720.
[10] G. Lorenzini, Blood velocity field numerical assessment using a GPL code in case of intravascular Doppler catheter affections: comparative analysis of different rheological models, Journal of biomechanics, 38(10) (2005) 2058-2069.
[11] Y. Fan, W. Jiang, Y. Zou, J. Li, J. Chen, X. Deng, Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation, Acta Mechanica Sinica, 25(2) (2009) 249-255.
[12] X. Wang, X. Li, Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors, Computers in biology and medicine, 41(9) (2011) 812-821.
[13] A. Skiadopoulos, P. Neofytou, C. Housiadas, Comparison of blood rheological models in patient specific cardiovascular system simulations, Journal of Hydrodynamics, Ser. B, 29(2) (2017) 293-304.
[14] A. Caballero, S. Laín, Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta, Computer methods in biomechanics and biomedical engineering, 18(11) (2015) 1200-1216.
[15] A.J. Apostolidis, A.P. Moyer, A.N. Beris, Non-Newtonian effects in simulations of coronary arterial blood flow, Journal of Non-Newtonian Fluid Mechanics, 233 (2016) 155-165.
[16] C. Oliveira, A.A. Soares, A. Simões, S. Gonzaga, A. Rouboa, Numerical study of non-Newtonian blood behavior in the abdominal aortic bifurcation of a patient-specific at rest, The Open Sports Sciences Journal, 10(1) (2017).
[17] S.E. Razavi, V. Farhangmehr, N. Zendeali, Numerical investigation of the blood flow through the middle cerebral artery, Bioimpacts, 8(3) (2018) 195-200.
[18] S. Bahrami, M. Norouzi, A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions, Biomechanics and modeling in mechanobiology, 17(6) (2018) 1785-1796.
[19] M. Kopernik, P. Tokarczyk, Development of multi-phase models of blood flow for medium-sized vessels with stenosis, Acta of bioengineering and biomechanics, 21(2) (2019).
[20] A. Razavi, E. Shirani, M.R. Sadeghi, Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models, Journal of biomechanics, 44(11) (2011) 2021-2030.
[21] T. Chaichana, Z. Sun, J. Jewkes, Computation of hemodynamics in the left coronary artery with variable angulations, Journal of biomechanics, 44(10) (2011) 1869-1878.
[22] S.E. Razavi, V. Farhangmehr, Z. Babaie, Numerical investigation of hemodynamic performance of a stent in the main branch of a coronary artery bifurcation, Bioimpacts, 9(2) 97-103.
[23] D. Sengupta, A.M. Kahn, J.C. Burns, S. Sankaran, S.C. Shadden, A.L. Marsden, Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease, Biomechanics and modeling in mechanobiology, 11(6) (2012) 915-932.
[24] I. ANSYS, (2016), ANSYS Fluent User’s Guide, Release 17.1.
[25] Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows, Biorheology, 28(3-4) (1991) 241-262.
[26] H.A. González, N.O. Moraga, On predicting unsteady non-Newtonian blood flow, Applied Mathematics and Computation, 170(2) (2005) 909-923.
[27] S. Karimi, M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, P. Jalali, Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry, Journal of Non-Newtonian Fluid Mechanics, 207 (2014) 42-52.
[28] A. Buradi, A. Mahalingam, Numerical Analysis of Wall Shear Stress Parameters of Newtonian Pulsatile Blood Flow Through Coronary Artery and Correlation to Atherosclerosis, in: B.B. Biswal, B.K. Sarkar, P. Mahanta (Eds.) Advances in Mechanical Engineering, Springer Singapore, Singapore, 2020, pp. 107-118.
[29] D.N. Ku, D.P. Giddens, C.K. Zarins, S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis (Dallas, Tex.), 5(3) (1985) 293-302.
[30] X. He, D.N. Ku, Pulsatile flow in the human left coronary artery bifurcation: average conditions, Journal of biomechanical engineering, 118(1) (1996) 74-82.
[31] C. Chiastra, S. Morlacchi, D. Gallo, U. Morbiducci, R. Cárdenes, I. Larrabide, F. Migliavacca, Computational fluid dynamic simulations of image-based stented coronary bifurcation models, Journal of The Royal Society Interface, 10(84) (2013) 20130193.
[32] K.E. Barrett, S. Boitano, S.M. Barman, H.L. Brooks, Ganong’s review of medical physiology twenty, (2010).
[33] E. Boutsianis, H. Dave, T. Frauenfelder, D. Poulikakos, S. Wildermuth, M. Turina, Y. Ventikos, G. Zund, Computational simulation of intracoronary flow based on real coronary geometry, European journal of Cardio-thoracic Surgery, 26(2) (2004) 248-256.
[34] D. Sengupta, A.M. Kahn, E. Kung, M.E. Moghadam, O. Shirinsky, G.A. Lyskina, J.C. Burns, A.L. Marsden, Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease, Biomechanics and modeling in mechanobiology, 13(6) (2014) 1261-1276.
[35] F.J.H. Gijsen, F.N. van de Vosse, J.D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, Journal of biomechanics, 32(6) (1999) 601-608.
[36] I. Chatziprodromou, A. Tricoli, D. Poulikakos, Y. Ventikos, Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model, Journal of biomechanics, 40(2) (2007) 412-426.