Numerical Simulation of Blood Flow in a Stented Aneurysm Using Lattice Boltzmann Method

Document Type : Research Article

Authors

Department of Mechanical Engineering, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran

Abstract

An aneurysm is a local deformation of a blood vessel caused by high pressure and wall weakness. The rupture of aneurysms leads to a cerebral hemorrhage and severe complications in the patient. Hemorrhagic stroke is one of the common causes of death by cardiovascular diseases and affects 15% of stroke patients worldwide. Recently, stent placement has been considered a promising and minimally invasive technique to prevent the rupture of an aneurysm. Hemodynamic characteristics of the blood flow are affected by the aneurysm geometry and stent properties. In this study, the effect of the stent size and strut shape on the blood flow parameters are investigated numerically. The Lattice Boltzmann Method is used in this simulation since it is convenient for modeling complex fluid flow and transport phenomena based on kinetic theory and statistic physics. The results show that with reduced pore size, speed and momentum in the aneurysm sac decrease, and stent-struts with a rectangular cross-section perform the best. Additionally, the height of the stent is more effective in reducing the blood flow than the width of the stent.

Keywords

Main Subjects


[1] D. Scheinert, M. Schroder, H. Steinkamp, J. Ludwig, G. Biamino, Treatment of iliac artery aneurysms by percutaneous implantation of stent grafts, Circulation, 102(suppl_3) (2000) Iii-253-Iii-258.
[2] I. Wanke, A. Dörfler, M. Forsting, Intracranial aneurysms, in:  Intracranial vascular malformations and aneurysms, Springer, (2008) 167-283.
[3] G. Geremia, M. Haklin, L. Brennecke, Embolization of experimentally created aneurysms with intravascular stent devices, American Journal of Neuroradiology, 15(7) (1994) 1223-1231.
[4] M. Hirabayashi, M. Ohta, D.A. Rüfenacht, B. Chopard, Characterization of flow reduction properties in an aneurysm due to a stent, Physical Review E, 68(2) (2003) 021918.
[5] F. Turjman, T.F. Massoud, C. Ji, G. Guglielmi, F. Vi, J. Robert, Combined stent implantation and endosaccular coil placement for treatment of experimental wide-necked aneurysms: a feasibility study in swine, American Journal of Neuroradiology, 15(6) (1994) 1087-1090.
[6] A.K. Wakhloo, F. Schellhammer, J. de Vries, J. Haberstroh, M. Schumacher, Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: an experimental study in a canine model, American Journal of Neuroradiology, 15(3) (1994) 493-502.
[7] M.P. Marks, M.D. Dake, G.K. Steinberg, A.M. Norbash, B. Lane, Stent placement for arterial and venous cerebrovascular disease: preliminary experience, Radiology, 191(2) (1994) 441-446.
[8] B.B. Lieber, V. Livescu, L. Hopkins, A.K. Wakhloo, Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow, Annals of biomedical engineering, 30(6) (2002) 768-777.
[9] T.-M. Liou, S.-N. Liou, K.-L. Chu, Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel, J. Biomech. Eng., 126(1) (2004) 36-43.
[10] M. Aenis, A. Stancampiano, A. Wakhloo, B. Lieber, Modeling of flow in a straight stented and nonstented side wall aneurysm model, (1997).
[11] M. Hirabayashi, M. Ohta, D.A. Rüfenacht, B. Chopard, A lattice Boltzmann study of blood flow in stented aneurism, Future Generation Computer Systems, 20(6) (2004) 925-934.
[12] M. Hirabayashi, M. Ohta, D.A. Rüfenacht, B. Chopard, Lattice Boltzmann analysis of the flow reduction mechanism in stented cerebral aneurysms for the endovascular treatment, in:  International Conference on Computational Science, Springer, (2003) 1044-1053.
[13] Y.H. Kim, S. Farhat, X. Xu, J.S. Lee, A lattice Boltzmann study of the non-Newtonian blood flow in stented aneurysm, in:  2008 NSTI Nanotechnology Conference and Trade Show, NSTI Nanotech 2008 Joint Meeting, Nanotechnology 2008, (2008) 417-420.
[14] J. Dong, K.K. Wong, Z. Sun, J. Tu, Numerical analysis of stent porosity and strut geometry for intra-saccular aneurysmal flow, in:  2011 Computing in Cardiology, IEEE, (2011) 477-480.
[15] D.T. Phan, S.-W. Lee, Effect of Stent Design Porosity on Hemodynamics Within Cerebral Aneurysm Model: Numerical Analysis, Transactions of the Korean Society of Mechanical Engineers B, 38(1) (2014) 63-70.
[16] K. Baráth, F. Cassot, J.H. Fasel, M. Ohta, D.A. Rüfenacht, Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics: flow quantification in elastic sidewall aneurysm models, Neurological Research, 27(sup1) (2005) 120-128.
[17] S.S. Shishir, M.A.K. Miah, A.S. Islam, A.T. Hasan, Blood Flow Dynamics in Cerebral Aneurysm-A CFD Simulation, Procedia Engineering, 105 (2015) 919-927.
[18] X.-j. Zhang, X. Li, F. He, Numerical simulation of blood flow in stented aneurysm using lattice Boltzmann method, in: 7th Asian-Pacific Conference on Medical and Biological Engineering, Springer, (2008) 113-116.
[19] X. Xu, J.S. Lee, Application of the lattice Boltzmann method to flow in aneurysm with ring‐shaped stent obstacles, International journal for numerical methods in fluids, 59(6) (2009) 691-710.
[20] C. Huang, Z. Chai, B. Shi, Non-newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm, Communications in Computational Physics, 13(3) (2013) 916-928.
[21] L. Xiao-Yang, Y. Hou-Hui, C. Ji-Yao, F. Hai-Ping, Lattice BGK simulations of the blood flow in elastic vessels, Chinese Physics Letters, 23(3) (2006) 738.
[22] N.H. Mokhtar, A. Abas, N. Razak, M.N.A. Hamid, S.L. Teong, Effect of different stent configurations using Lattice Boltzmann method and particles image velocimetry on artery bifurcation aneurysm problem, Journal of theoretical biology, 433 (2017) 73-84.
[23] B. Czaja, G. Závodszky, V. Azizi Tarksalooyeh, A. Hoekstra, Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio, Journal of The Royal Society Interface, 15(146) (2018) 20180485.
[24] H.H. Afrouzi, M. Ahmadian, M. Hosseini, H. Arasteh, D. Toghraie, S. Rostami, Simulation of blood flow in arteries with aneurysm: Lattice Boltzmann Approach (LBM), Computer Methods and Programs in Biomedicine, 187 (2020) 105312.
[25] H. Wang, T. Krüger, F. Varnik, Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study, PLoS One, 15(1) (2020) e0227770.
[26] M. Löw, K. Perktold, R. Raunig, Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics, Biorheology, 30(3-4) (1993) 287-298.
[27] K. Perktold, T. Kenner, D. Hilbert, B. Spork, H. Florian, Numerical blood flow analysis: arterial bifurcation with a saccular aneurysm, Basic research in cardiology, 83(1) (1988) 24-31.
[28] K. Perktold, R. Peter, M. Resch, Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology, 26(6) (1989) 1011-1030.
[29] B.B. Lieber, A.P. Stancampiano, A.K. Wakhloo, Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Annals of biomedical engineering, 25(3) (1997) 460-469.
[30] X. He, L.-S. Luo, Lattice Boltzmann model for the incompressible Navier–Stokes equation, Journal of statistical Physics, 88(3) (1997) 927-944.
[31] R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: theory and applications, Physics Reports, 222(3) (1992) 145-197.
[32] Z. Guo, B. Shi, N. Wang, Lattice BGK model for incompressible Navier–Stokes equation, Journal of Computational Physics, 165(1) (2000) 288-306.
[33] S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford university press, 2001.
[34] M. Sukop, DT Thorne, Jr. Lattice Boltzmann Modeling Lattice Boltzmann Modeling,  (2006).
[35] W. Nichols, M. O’Rourke, McDonald’s Blood Flow in Arteries (Lea & Febiger, Philadelphia, PA), in, 1990.
[36] A. Dupuis, From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river, Citeseer, 2002.
[37] A.R. Mantha, G. Benndorf, A. Hernandez, R.W. Metcalfe, Stability of pulsatile blood flow at the ostium of cerebral aneurysms, Journal of biomechanics, 42(8) (2009) 1081-1087.
[38] K. Baráth, F. Cassot, D.A. Rüfenacht, J.H. Fasel, Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect, American Journal of Neuroradiology, 25(10) (2004) 1750-1759.
[39] Y.H. Kim, X. Xu, J.S. Lee, The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method, Annals of biomedical engineering, 38(7) (2010) 2274-2292.
[40] L. Boussel, V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W.S. Smith, W.L. Young, D. Saloner, Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study, Stroke, 39(11) (2008) 2997-3002.
[41] M. Ohta, S.G. Wetzel, P. Dantan, C. Bachelet, K.O. Lovblad, H. Yilmaz, P. Flaud, D.A. Rüfenacht, Rheological changes after stenting of a cerebral aneurysm: a finite element modeling approach, Cardiovascular and interventional radiology, 28(6) (2005) 768-772.
[42] S. Kondo, N. Hashimoto, H. Kikuchi, F. Hazama, I. Nagata, H. Kataoka, Cerebral aneurysms arising at nonbranching sites: an experimental study, Stroke, 28(2) (1997) 398-404.
[43] M. Shojima, M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, T. Kirino, Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms, Stroke, 35(11) (2004) 2500-2505.
[44] T.-M. Liou, S.-N. Liou, Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel, Experimental Mechanics, 44(3) (2004) 253-260.
[45] S. Yu, J. Zhao, A steady flow analysis on the stented and non-stented sidewall aneurysm models, Medical engineering & physics, 21(3) (1999) 133-141.
[46] R. Ouared, B. Chopard, Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes, Journal of statistical physics, 121(1) (2005) 209-221.
[47] R.L. Sahjpaul, M.M. Abdulhak, C.G. Drake, R.R. Hammond, Fatal traumatic vertebral artery aneurysm rupture: Case report, Journal of neurosurgery, 89(5) (1998) 822-824.