[1] D. Scheinert, M. Schroder, H. Steinkamp, J. Ludwig, G. Biamino, Treatment of iliac artery aneurysms by percutaneous implantation of stent grafts, Circulation, 102(suppl_3) (2000) Iii-253-Iii-258.
[2] I. Wanke, A. Dörfler, M. Forsting, Intracranial aneurysms, in: Intracranial vascular malformations and aneurysms, Springer, (2008) 167-283.
[3] G. Geremia, M. Haklin, L. Brennecke, Embolization of experimentally created aneurysms with intravascular stent devices, American Journal of Neuroradiology, 15(7) (1994) 1223-1231.
[4] M. Hirabayashi, M. Ohta, D.A. Rüfenacht, B. Chopard, Characterization of flow reduction properties in an aneurysm due to a stent, Physical Review E, 68(2) (2003) 021918.
[5] F. Turjman, T.F. Massoud, C. Ji, G. Guglielmi, F. Vi, J. Robert, Combined stent implantation and endosaccular coil placement for treatment of experimental wide-necked aneurysms: a feasibility study in swine, American Journal of Neuroradiology, 15(6) (1994) 1087-1090.
[6] A.K. Wakhloo, F. Schellhammer, J. de Vries, J. Haberstroh, M. Schumacher, Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: an experimental study in a canine model, American Journal of Neuroradiology, 15(3) (1994) 493-502.
[7] M.P. Marks, M.D. Dake, G.K. Steinberg, A.M. Norbash, B. Lane, Stent placement for arterial and venous cerebrovascular disease: preliminary experience, Radiology, 191(2) (1994) 441-446.
[8] B.B. Lieber, V. Livescu, L. Hopkins, A.K. Wakhloo, Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow, Annals of biomedical engineering, 30(6) (2002) 768-777.
[9] T.-M. Liou, S.-N. Liou, K.-L. Chu, Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel, J. Biomech. Eng., 126(1) (2004) 36-43.
[10] M. Aenis, A. Stancampiano, A. Wakhloo, B. Lieber, Modeling of flow in a straight stented and nonstented side wall aneurysm model, (1997).
[11] M. Hirabayashi, M. Ohta, D.A. Rüfenacht, B. Chopard, A lattice Boltzmann study of blood flow in stented aneurism, Future Generation Computer Systems, 20(6) (2004) 925-934.
[12] M. Hirabayashi, M. Ohta, D.A. Rüfenacht, B. Chopard, Lattice Boltzmann analysis of the flow reduction mechanism in stented cerebral aneurysms for the endovascular treatment, in: International Conference on Computational Science, Springer, (2003) 1044-1053.
[13] Y.H. Kim, S. Farhat, X. Xu, J.S. Lee, A lattice Boltzmann study of the non-Newtonian blood flow in stented aneurysm, in: 2008 NSTI Nanotechnology Conference and Trade Show, NSTI Nanotech 2008 Joint Meeting, Nanotechnology 2008, (2008) 417-420.
[14] J. Dong, K.K. Wong, Z. Sun, J. Tu, Numerical analysis of stent porosity and strut geometry for intra-saccular aneurysmal flow, in: 2011 Computing in Cardiology, IEEE, (2011) 477-480.
[15] D.T. Phan, S.-W. Lee, Effect of Stent Design Porosity on Hemodynamics Within Cerebral Aneurysm Model: Numerical Analysis, Transactions of the Korean Society of Mechanical Engineers B, 38(1) (2014) 63-70.
[16] K. Baráth, F. Cassot, J.H. Fasel, M. Ohta, D.A. Rüfenacht, Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics: flow quantification in elastic sidewall aneurysm models, Neurological Research, 27(sup1) (2005) 120-128.
[17] S.S. Shishir, M.A.K. Miah, A.S. Islam, A.T. Hasan, Blood Flow Dynamics in Cerebral Aneurysm-A CFD Simulation, Procedia Engineering, 105 (2015) 919-927.
[18] X.-j. Zhang, X. Li, F. He, Numerical simulation of blood flow in stented aneurysm using lattice Boltzmann method, in: 7th Asian-Pacific Conference on Medical and Biological Engineering, Springer, (2008) 113-116.
[19] X. Xu, J.S. Lee, Application of the lattice Boltzmann method to flow in aneurysm with ringâshaped stent obstacles, International journal for numerical methods in fluids, 59(6) (2009) 691-710.
[20] C. Huang, Z. Chai, B. Shi, Non-newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm, Communications in Computational Physics, 13(3) (2013) 916-928.
[21] L. Xiao-Yang, Y. Hou-Hui, C. Ji-Yao, F. Hai-Ping, Lattice BGK simulations of the blood flow in elastic vessels, Chinese Physics Letters, 23(3) (2006) 738.
[22] N.H. Mokhtar, A. Abas, N. Razak, M.N.A. Hamid, S.L. Teong, Effect of different stent configurations using Lattice Boltzmann method and particles image velocimetry on artery bifurcation aneurysm problem, Journal of theoretical biology, 433 (2017) 73-84.
[23] B. Czaja, G. Závodszky, V. Azizi Tarksalooyeh, A. Hoekstra, Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio, Journal of The Royal Society Interface, 15(146) (2018) 20180485.
[24] H.H. Afrouzi, M. Ahmadian, M. Hosseini, H. Arasteh, D. Toghraie, S. Rostami, Simulation of blood flow in arteries with aneurysm: Lattice Boltzmann Approach (LBM), Computer Methods and Programs in Biomedicine, 187 (2020) 105312.
[25] H. Wang, T. Krüger, F. Varnik, Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study, PLoS One, 15(1) (2020) e0227770.
[26] M. Löw, K. Perktold, R. Raunig, Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics, Biorheology, 30(3-4) (1993) 287-298.
[27] K. Perktold, T. Kenner, D. Hilbert, B. Spork, H. Florian, Numerical blood flow analysis: arterial bifurcation with a saccular aneurysm, Basic research in cardiology, 83(1) (1988) 24-31.
[28] K. Perktold, R. Peter, M. Resch, Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology, 26(6) (1989) 1011-1030.
[29] B.B. Lieber, A.P. Stancampiano, A.K. Wakhloo, Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Annals of biomedical engineering, 25(3) (1997) 460-469.
[30] X. He, L.-S. Luo, Lattice Boltzmann model for the incompressible Navier–Stokes equation, Journal of statistical Physics, 88(3) (1997) 927-944.
[31] R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: theory and applications, Physics Reports, 222(3) (1992) 145-197.
[32] Z. Guo, B. Shi, N. Wang, Lattice BGK model for incompressible Navier–Stokes equation, Journal of Computational Physics, 165(1) (2000) 288-306.
[33] S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford university press, 2001.
[34] M. Sukop, DT Thorne, Jr. Lattice Boltzmann Modeling Lattice Boltzmann Modeling, (2006).
[35] W. Nichols, M. O’Rourke, McDonald’s Blood Flow in Arteries (Lea & Febiger, Philadelphia, PA), in, 1990.
[36] A. Dupuis, From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river, Citeseer, 2002.
[37] A.R. Mantha, G. Benndorf, A. Hernandez, R.W. Metcalfe, Stability of pulsatile blood flow at the ostium of cerebral aneurysms, Journal of biomechanics, 42(8) (2009) 1081-1087.
[38] K. Baráth, F. Cassot, D.A. Rüfenacht, J.H. Fasel, Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect, American Journal of Neuroradiology, 25(10) (2004) 1750-1759.
[39] Y.H. Kim, X. Xu, J.S. Lee, The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method, Annals of biomedical engineering, 38(7) (2010) 2274-2292.
[40] L. Boussel, V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W.S. Smith, W.L. Young, D. Saloner, Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study, Stroke, 39(11) (2008) 2997-3002.
[41] M. Ohta, S.G. Wetzel, P. Dantan, C. Bachelet, K.O. Lovblad, H. Yilmaz, P. Flaud, D.A. Rüfenacht, Rheological changes after stenting of a cerebral aneurysm: a finite element modeling approach, Cardiovascular and interventional radiology, 28(6) (2005) 768-772.
[42] S. Kondo, N. Hashimoto, H. Kikuchi, F. Hazama, I. Nagata, H. Kataoka, Cerebral aneurysms arising at nonbranching sites: an experimental study, Stroke, 28(2) (1997) 398-404.
[43] M. Shojima, M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, T. Kirino, Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms, Stroke, 35(11) (2004) 2500-2505.
[44] T.-M. Liou, S.-N. Liou, Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel, Experimental Mechanics, 44(3) (2004) 253-260.
[45] S. Yu, J. Zhao, A steady flow analysis on the stented and non-stented sidewall aneurysm models, Medical engineering & physics, 21(3) (1999) 133-141.
[46] R. Ouared, B. Chopard, Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes, Journal of statistical physics, 121(1) (2005) 209-221.
[47] R.L. Sahjpaul, M.M. Abdulhak, C.G. Drake, R.R. Hammond, Fatal traumatic vertebral artery aneurysm rupture: Case report, Journal of neurosurgery, 89(5) (1998) 822-824.