[1] M. Kirchhoff, M. Ilg, D. Cote, Application of borophosphosilicate glass (BPSG) in microelectronic processing, Berichte der Bunsengesellschaft für physikalische Chemie, 100(9) (1996) 1434-1437.
[2] K. Li, G. Xu, X. Huang, Z. Xie, F. Gong, Temperature effect on the deformation and optical quality of moulded glass lenses in precision glass moulding, International Journal of Applied Glass Science, 11(1) (2020) 185-194.
[3] Y. Suzuka, M. Ota, Optical device, optical device controller, and method for manufacturing optical device, in, Google Patents, 2020.
[4] A. Crespi, R. Osellame, F. Bragheri, Femtosecond-laser-written optofluidics in alumino-borosilicate glass, Optical Materials: X, 4 (2019) 100042.
[5] E.S. Hamilton, A.R. Hawkins, Direct macro-to-micro interface method for microfluidics, Journal of Micromechanics and Microengineering, 30(5) (2020) 057001.
[6] Y. Liu, A. Hansen, R.K. Shaha, C. Frick, J. Oakey, Bench scale glass-to-glass bonding for microfluidic prototyping, Microsystem Technologies, (2020) 1-9.
[7] G.C. Rezende, S. Le Calvé, J.J. Brandner, D. Newport, Micro photoionization detectors, Sensors and Actuators B: Chemical, 287 (2019) 86-94.
[8] R. Tölke, A. Bieberle-Hütter, A. Evans, J. Rupp, L. Gauckler, Processing of Foturan® glass ceramic substrates for micro-solid oxide fuel cells, Journal of the European Ceramic Society, 32(12) (2012) 3229-3238
[9] M. Rich, O. Mohd, F.S. Ligler, G.M. Walker, Characterization of glass frit capillary pumps for microfluidic devices, Microfluidics and Nanofluidics, 23(5) (2019) 1-9.
[10] J. Hwang, Y.H. Cho, M.S. Park, B.H. Kim, Microchannel fabrication on glass materials for microfluidic devices, International Journal of Precision Engineering and Manufacturing, 20(3) (2019) 479-495.
[11] S. Kumar, A. Dvivedi, Effect of tool materials on performance of rotary tool micro-USM process during fabrication of microchannels, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10) (2019) 1-16.
[12] M.S. Cheema, A. Dvivedi, A.K. Sharma, Tool wear studies in fabrication of microchannels in ultrasonic micromachining, Ultrasonics, 57 (2015) 57-64
[13] M. Azmir, A. Ahsan, A study of abrasive water jet machining process on glass/epoxy composite laminate, Journal of Materials Processing Technology, 209(20) (2009) 6168-6173.
[14] F. Mehrabi, M. Farahnakian, S. Elhami, M. Razfar, Application of electrolyte injection to the electro-chemical discharge machining (ECDM) on the optical glass, Journal of Materials Processing Technology, 255 (2018) 665-672.
[15] A. Behroozfar, M.R. Razfar, Experimental and numerical study of material removal in electrochemical discharge machining (ECDM), Materials and Manufacturing Processes, 31(4) (2016) 495-503.
[16] M. Hajian, M.R. Razfar, S. Movahed, An experimental study on the effect of magnetic field orientations and electrolyte concentrations on ECDM milling performance of glass, Precision Engineering, 45 (2016) 322-331.
[17] J. Arab, H.S. Chauhan, P. Dixit, Electrochemical discharge machining of soda lime glass for MEMS applications, International Journal of Precision Technology, 8(2-4) (2019) 220-236.
[18] L. Zhang, W. Wang, X.-J. Ju, R. Xie, Z. Liu, L.-Y. Chu, Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching, RSC Advances, 5(8) (2015) 5638-5646.
[19] S. Das, V.C. Srivastava, Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters, Photochemical & Photobiological Sciences, 15(6) (2016) 714-730.
[20] U. Sarma, S.N. Joshi, Effect of Laser Parameters on Laser-Induced Plasma-Assisted Ablation (LIPAA) of Glass, in: Advances in Unconventional Machining and Composites, Springer, 2020, pp. 67-76.
[21] M. Ghoreishi, D. Low, L. Li, Comparative statistical analysis of hole taper and circularity in laser percussion drilling, International Journal of Machine Tools and Manufacture, 42(9) (2002) 985-995.
[22] E. Golchin, M. Moradi, S. Shamsaei, Laser drilling simulation of glass by using finite element method and selecting the suitable Gaussian distribution, in: Modares Mechanical Engineering, Proceedings of the Advanced Machining and Machine Tools Conference, 2015, pp. 416-420
[23] J. Zhang, K. Sugioka, K. Midorikawa, Micromachining of glass materials by laser-induced plasma-assisted ablation (LIPAA) using a conventional nanosecond laser, in: Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, International Society for Optics and Photonics, 1999, pp. 363-369.
[24] G. Kibria, B. Bhattacharyya, J.P. Davim, Non-traditional micromachining processes, Springer, 2017.
[25] J. Zhang, K. Sugioka, K. Midorikawa, Microprocessing of glass materials by laser-induced plasma-assisted ablation using nanosecond pulsed lasers, in: Laser Applications in Microelectronic and Optoelectronic Manufacturing V, International Society for Optics and Photonics, 2000, pp. 332-337.
[26] V.M. Kadan, I.V. Blonsky, V.O. Salnikov, E.V. Orieshko, Effects of laser-induced plasma in machining of transparent materials, in: Micromachining and Microfabrication Process Technology X, International Society for Optics and Photonics, 2005, pp. 130-137
[27] Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, K. Midorikawa, Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials, Applied Physics A, 79(4) (2004) 1001-1003.
[28] Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, K. Midorikawa, Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA), Applied Physics A, 80(1) (2005) 111-115.
[29] Y. Hanada, K. Sugioka, K. Midorikawa, Laser-induced plasma-assisted ablation (LIPAA): fundamental and industrial applications, in: High-Power Laser Ablation VI, International Society for Optics and Photonics, 2006, pp. 626111.
[30] S. Xu, B. Liu, C. Pan, L. Ren, B. Tang, Q. Hu, L. Jiang, Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices, Journal of Materials Processing Technology, 247 (2017) 204-213.
[31] T. Rahman, Z. Rehman, S. Ullah, H. Qayyum, B. Shafique, R. Ali, U. Liaqat, A. Dogar, A. Qayyum, Laser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphology, Optics & Laser Technology, 120 (2019) 105768.
[32] Y. Zhao, Q. Li, Z. Wang, Z. Dai, T. Chen, Microchannel fabrication in fused quartz by backside laser-induced plasma ablation using 248 nm KrF excimer laser, Applied Sciences, 9(24) (2019) 5320.
[33] N.B. Dahotre, S. Harimkar, Laser fabrication and machining of materials, Springer Science & Business Media, 2008.
[34] B. Wu, S. Tao, S. Lei, The interactions of microhole sidewall with plasma induced by femtosecond laser ablation in high-aspect-ratio microholes, Journal of manufacturing science and engineering, 134(1) (2012).
[35] S. Harilal, M. Tillack, B. O’shay, C. Bindhu, F. Najmabadi, Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field, Physical Review E, 69(2) (2004) 026413.
[36] K. Kondo, T. Kanesue, J. Tamura, R. Dabrowski, M. Okamura, Laser plasma in a magnetic field, Review of Scientific Instruments, 81(2) (2010) 02B716.
[37] C. Pagano, J. Lunney, Lateral confinement of laser ablation plasma in magnetic field, Journal of Physics D: Applied Physics, 43(30) (2010) 305202.
[38] k.S. Lash, R. Gilgenbach, C. Ching, Laser‐ablation‐assisted‐plasma discharges of aluminum in a transverse‐magnetic field, Applied physics letters, 65(5) (1994) 531-533.
[39] C. Ye, G.J. Cheng, S. Tao, B. Wu, Magnetic field effects on laser drilling, Journal of Manufacturing Science and Engineering, 135(6) (2013).
[40] Y.-J. Chang, C.-L. Kuo, N.-Y. Wang, Magnetic Assisted Laser Micromachining for Highly Reflective Metals, Journal of Laser Micro/nanoengineering, 7(3) (2012).
[41] S. Wolff, I. Saxena, A preliminary study on the effect of external magnetic fields on laser-induced plasma micromachining (LIPMM), Manufacturing Letters, 2(2) (2014) 54-59.
[42] R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser‐produced plasma in confined geometry, Journal of applied physics, 68(2) (1990) 775-784.
[43] K.A. Pathak, A.J. Chandy, Laser ablated carbon plume flow dynamics under magnetic field, Journal of Applied Physics, 105(8) (2009) 084909.
[44] Y.T. Lee, R. More, An electron conductivity model for dense plasmas, The Physics of fluids, 27(5) (1984) 1273-1286.
[45] S. Elhami, M. Razfar, Study of the current signal and material removal during ultrasonic-assisted electrochemical discharge machining, The International Journal of Advanced Manufacturing Technology, 92(5) (2017) 1591-1599.