[1] A. Ashori, Wood–plastic composites as promising green-composites for automotive industries!, Bioresour. Technol., 99(11) (2008) 4661-4667.
[2] D.J. Gardner, Y. Han, L. Wang, Wood–Plastic Composite Technology, Current Forestry Reports, 1(3) (2015) 139-150.
[3] G. Koronis, A. Silva, M. Fontul, Green composites: A review of adequate materials for automotive applications, Compos. B. Eng, 44(1) (2013) 120-127.
[4] E. Zini, M. Scandola, Green composites: an overview, Polym. Compos., 32(12) (2011) 1905-1915.
[5] R. Gunti, A. Ratna Prasad, A. Gupta, Mechanical and degradation properties of natural fiber‐reinforced PLA composites: Jute, sisal, and elephant grass, Polym. Compos., 39(4) (2018) 1125-1136.
[6] R.B. Yusoff, H. Takagi, A.N. Nakagaito, Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers, Industrial Crops and Products, 94 (2016) 562-573.
[7] G.-L. Gavril, M. Wrona, A. Bertella, M. Świeca, M. Râpă, J. Salafranca, C. Nerín, Influence of medicinal and aromatic plants into risk assessment of a new bioactive packaging based on polylactic acid (PLA), Food Chem. Toxicol., 132 (2019) 110662.
[8] I.S. Tawakkal, M.J. Cran, S.W. Bigger, Effect of poly (lactic acid)/kenaf composites incorporated with thymol on the antimicrobial activity of processed meat, Journal of Food Processing and Preservation, 41(5) (2017) e13145.
[9] P.K. Bajpai, I. Singh, J. Madaan, Development and characterization of PLA-based green composites: A review, J. Thermoplast. Compos. Mater., 27(1) (2014) 52-81.
[10] N. Sarifuddin, H. Ismail, Z. Ahmad, The Effect of Kenaf Core Fibre Loading on Properties of Low Density Polyethylene/Thermoplastic Sago Starch/Kenaf Core Fiber Composites, Journal of Physical Science, 24(2) (2013).
[11] O. Seong, Han, M. Karevan, I.N. Sim, M. Bhuiyan, Y. Jang, J. Ghaffar, K. Kalaitzidou, Understanding the Reinforcing Mechanisms in Kenaf Fiber/PLA and Kenaf Fiber/PP Composites: A Comparative Study, International Journal of Polymer Science, 2012 (2012) 679252.
[12] H. Anuar, A. Zuraida, J. Kovacs, T. Tabi, Improvement of mechanical properties of injection-molded polylactic acid–kenaf fiber biocomposite, J. Thermoplast. Compos. Mater., 25(2) (2012) 153-164.
[13] I. Tharazi, A. Sulong, N. Muhamad, C. Haron, D. Tholibon, N. Ismail, M.M. Radzi, Z. Razak, Optimization of hot press parameters on tensile strength for unidirectional long kenaf fiber reinforced polylactic-acid composite, Procedia engineering, 184 (2017) 478-485.
[14] G. BEN, T. MATSUDA, Y. UENO, Development and mechanical properties of kenaf fibers green composites with pultrusion method, Journal of the Japan Society for Composite Materials, 36(2) (2010) 41-47.
[15] G.S. Mann, L.P. Singh, P. Kumar, S. Singh, Green composites: A review of processing technologies and recent applications, J. Thermoplast. Compos. Mater., 33(8) (2020) 1145-1171.
[16] A.U. Birnin-Yauri, N.A. Ibrahim, N. Zainuddin, K. Abdan, Y.Y. Then, B.W. Chieng, Effect of maleic anhydride-modified poly (lactic acid) on the properties of its hybrid fiber biocomposites, Polymers, 9(5) (2017) 165.
[17] I.S. Tawakkal, M.J. Cran, S.W. Bigger, Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites, Industrial Crops and Products, 61 (2014) 74-83.
[18] N.I.A. Razak, N.A. Ibrahim, N. Zainuddin, M. Rayung, W.Z. Saad, The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly (lactic acid) composites, Molecules, 19(3) (2014) 2957-2968.
[19] N. Graupner, J. Rößler, G. Ziegmann, J. Müssig, Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: a critical review of pull-out test, microbond test and single fibre fragmentation test results, Compos. - A: Appl. Sci. Manuf, 63 (2014) 133-148.
[20] M. Nematollahi, M. Karevan, P. Mosaddegh, M. Farzin, Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites, Materials Research Express, 6(9) (2019) 095409.
[21] M. Nematollahi, M. Karevan, M. Fallah, M. Farzin, Experimental and Numerical Study of the Critical Length of Short Kenaf Fiber Reinforced Polypropylene Composites, Fibers and Polymers, 21(4) (2020) 821-828.
[22] T.-J. Chung, J.-W. Park, H.-J. Lee, H.-J. Kwon, H.-J. Kim, Y.-K. Lee, W. Tai Yin Tze, The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation, Applied Sciences, 8(3) (2018) 376.
[23] S. Jia, D. Yu, Y. Zhu, Z. Wang, L. Chen, L. Fu, Morphology, crystallization and thermal behaviors of PLA-based composites: wonderful effects of hybrid GO/PEG via dynamic impregnating, Polymers, 9(10) (2017) 528.
[24] A. Gao, Y. Zhao, Q. Yang, Y. Fu, L. Xue, Facile preparation of patterned petal-like PLA surfaces with tunable water micro-droplet adhesion properties based on stereo-complex co-crystallization from non-solvent induced phase separation processes, Journal of Materials Chemistry A, 4(31) (2016) 12058-12064.
[25] Z. Abdul Hamid, Surface Modification of Poly (lactic acid) (PLA) via Alkaline Hydrolysis Degradation, Advanced Materials Research, 970 (2014) 324-327.
[26] J.-M. Park, J.-Y. Choi, Z.-J. Wang, D.-J. Kwon, P.-S. Shin, S.-O. Moon, K.L. DeVries, Comparison of mechanical and interfacial properties of kenaf fiber before and after rice-washed water treatment, Compos. B. Eng, 83 (2015) 21-26.
[27] M.S. Huda, L.T. Drzal, A.K. Mohanty, M. Misra, Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers, Compos. Sci. Technol., 68(2) (2008) 424-432.
[28] H. Anuar, A. Zuraida, Thermal properties of injection moulded polylactic acid–kenaf fibre biocomposite, Malaysian Polymer J, 6(1) (2011) 51-57.
[29] G. Papageorgiou, D. Achilias, S. Nanaki, T. Beslikas, D. Bikiaris, PLA nanocomposites: Effect of filler type on non-isothermal crystallization, Thermochim. Acta, 511(1-2) (2010) 129-139.
[30] D. Wu, L. Wu, L. Wu, B. Xu, Y. Zhang, M. Zhang, Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 45(9) (2007) 1100-1113.
[31] P.-Y. Chen, H.-Y. Lian, Y.-F. Shih, S.-M. Chen-Wei, R.-J. Jeng, Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites, Mater. Chem. Phys., 196 (2017) 249-255.
[32] S.O. Han, M. Karevan, I.N. Sim, M.A. Bhuiyan, Y.H. Jang, J. Ghaffar, K. Kalaitzidou, Understanding the reinforcing mechanisms in kenaf fiber/PLA and kenaf fiber/PP composites: A comparative study, International Journal of Polymer Science, 2012 (2012).
[33] R. Qiao, H. Deng, K.W. Putz, L.C. Brinson, Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 49(10) (2011) 740-748.
[34] J. Seiler, J. Kindersberger, Insight into the interphase in polymer nanocomposites, IEEE Trans Dielectr Electr Insul, 21(2) (2014) 537-547.
[35] O.K.C. Tsui, T.P. Russell, C.J. Hawker, Effect of interfacial interactions on the glass transition of polymer thin films, Macromolecules, 34(16) (2001) 5535-5539.
[36] W. Zhao, Y. Su, X. Gao, J. Xu, D. Wang, Interfacial effect on confined crystallization of poly (ethylene oxide)/silica composites, J. Polym. Sci., Part B: Polym. Phys., 54(3) (2016) 414-423.
[37] Z. Tang, C. Zhang, X. Liu, J. Zhu, The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent, J. Appl. Polym. Sci., 125(2) (2012) 1108-1115.
[38] J. Feng, S.R. Venna, D.P. Hopkinson, Interactions at the interface of polymer matrix-filler particle composites, Polymer, 103 (2016) 189-195.
[39] F. Jones, A review of interphase formation and design in fibre-reinforced composites, J. Adhes. Sci. Technol., 24(1) (2010) 171-202.
[40] S.H. Ghaffar, O.A. Madyan, M. Fan, J. Corker, The influence of additives on the interfacial bonding mechanisms between natural fibre and biopolymer composites, Macromolecular Research, 26(10) (2018) 851-863.
[41] A. Hassan, M.M. Isa, Z.M. Ishak, N. Ishak, N.A. Rahman, F.M. Salleh, Characterization of sodium hydroxide-treated kenaf fibres for biodegradable composite application, High Perform. Polym., 30(8) (2018) 890-899.
[42] N. Saba, M. Paridah, M. Jawaid, Mechanical properties of kenaf fibre reinforced polymer composite: A review, Construction and Building materials, 76 (2015) 87-96.
[43] Y. Zare, K.Y. Rhee, D. Hui, Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites, Compos. B. Eng, 122 (2017) 41-46.