[1] D.C. Lagoudas, Shape memory alloys: modeling and engineering applications, Springer Science & Business Media, (2008).
[2] Z.C. Feng, D.Z. Li, Dynamics of a mechanical system with a shape memory alloy bar, Journal of Intelligent Materials Systems and Structures, 7 (4) (1996) 399-410.
[3] D. Bernardini, G. Rega, Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators, Mathematical and Computer Modelling of Dynamical Systems, 11 (3) (2005) 291-314.
[4] M.A. Savi, P. Pacheco, Chaos and hyperchaos in shape memory systems, International Journal of Bifurcation and Chaos, 12 (3) (2002) 645-657.
[5] L.G. Machado, M.A. Savi, P.M. Pacheco, Nonlinear dynamics and chaos in coupled shape memory oscillators, International Journal of Solids and Structures, 40 (19) (2003) 5139-5156.
[6] D. Lagoudas, L. Machado, M. Lagoudas, Nonlinear vibration of a one-degree of freedom shape memory alloy oscillator: a numerical-experimental investigation, In 46th AIAA/ASME/ASCE /ASC Structures, Structural Dynamics and Materials Conference, (2005) 2119.
[7] X.Y. Tsai, L.W. Chen, Dynamic stability of a shape memory alloy wire reinforced composite beam, Composite Structures, 56 (3) (2002) 235-241.
[8] S.M.R. Khalili, M.B. Dehkordi, E. Carrera, A nonlinear finite element model using a unified formulation for dynamic analysis of multilayer composite plate embedded with SMA wires, Composite Structures, 106 (2013) 635-645.
[9] S.M.T. Hashemi, S.E. Khadem, Modeling and analysis of the vibration behavior of a shape memory alloy beam, International Journal of Mechanical Sciences, 48 (1) (2006) 44-52.
[10] A.R. Damanpack, M. Bodaghi, M.M. Aghdam, M. Shakeri, On the vibration control capability of shape memory alloy composite beams, Composite Structures, 110 (2014) 325-334.
[11] M. Samadpour, H. Asadi, Q. Wang, Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys, European Journal of Mechanics, 57 (2016) 18-28.
[12] H. Asadi, A.R. Beheshti, On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory, Acta Mechanica, 229 (6) (2018) 2413-2430.
[13] H. Lin, C. Shao, D. Cao, Nonlinear flutter and random response of composite panel embedded in shape memory alloy in thermal-aero-acoustic coupled field, Aerospace Science and Technology, 100 (2020) 105785.
[14] A. Rostamijavanani, M.R. Ebrahimi, S. Jahedi, Thermal post-buckling analysis of laminated composite plates embedded with shape memory alloy fibers using semi-analytical finite strip method, Journal of Failure Analysis and Prevention, 21 (1) (2021) 290-301.
[15] A. Kumar, K. Sharma, A.R. Dixit, Carbon nanotube-and graphene-reinforced multiphase polymeric composites: review on their properties and applications, Journal of Materials Science, 55 (7) (2020) 2682-2724.
[16] M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, Science, 339 (6119) (2013) 535-539.
[17] C. Wang, Y. Xu, J. Du, Study on the thermal buckling and post-buckling of metallic sub-stiffening structure and its optimization, Materials and Structures, 49 (11) (2016) 4867-4879.
[18] K. Mehar, P.K. Mishra, S.K. Panda, Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure, Mechanics of Advanced Materials and Structures, 1 (2020) 1–13.
[19] K. Mehar, P.K. Mishra, S.K. Panda, Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels, Computers & Mathematics with Applications, 90 (2021) 13-24.
[20] S. Kamarian, M. Bodaghi, R.B. Isfahani, M. Shakeri, M.H. Yas, Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: Experimental and numerical investigations, Mechanics Based Design of Structures and Machines, 49 (2) (2021) 217-232.
[21] S. Kamarian, M. Bodaghi, R.B. Isfahani, J. Song, A comparison between the effects of shape memory alloys and carbon nanotubes on the thermal buckling of laminated composite beams, Mechanics Based Design of Structures and Machines, 1 (2020) 1-24.
[22] L.C. Brinson, M.S. Huang, Simplifications and comparisons of shape memory alloy constitutive models, Journal of Intelligent Materials Systems and Structures, 7 (1) (1996) 108-114.
[23] D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters, 76 (20) (2000) 2868-2870.
[24] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, (2003).
[25] R.L. Bisplinghoff, H. Ashley, Principles of aeroelasticity. Courier Corporation, (2013).
[26] M.H. Yas, N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, International Journal of Pressure Vessels and Piping, 98 (2012) 119-128.
[27] L.L. Ke, J. Yang, S. Kitipornchai, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Composite Structures, 92 (3) (2010) 676-683.