[1] B. Poon, D. Rittel, G. Ravichandran, An analysis of nanoindentation in linearly elastic solids, International Journal of Solids and Structures, 45(24) (2008) 6018-6033.
[2] F. Cardarelli, Materials handbook, Springer, 2018.
[3] G. Ziegenhain, A. Hartmaier, H.M. Urbassek, Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals, Journal of the Mechanics and Physics of Solids, 57(9) (2009) 1514-1526.
[4] A.C. Fischer-Cripps, Applications of nanoindentation, in: Nanoindentation, Springer, 2011, pp. 213-233.
[5] T.-H. Fang, C.-I. Weng, J.-G. Chang, Molecular dynamics analysis of temperature effects on nanoindentation measurement, Materials Science and Engineering: A, 357(1-2) (2003) 7-12.
[6] P. Peng, G. Liao, T. Shi, Z. Tang, Y. Gao, Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate, Applied Surface Science, 256(21) (2010) 6284-6290.
[7] W. Cheong, L. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation, Nanotechnology, 11(3) (2000) 173.
[8] C.-L. Liu, T.-H. Fang, J.-F. Lin, Atomistic simulations of hard and soft films under nanoindentation, Materials Science and Engineering: A, 452-453 (2007) 135-141.
[9] M. Yaghoobi, G.Z. Voyiadjis, Effect of boundary conditions on the MD simulation of nanoindentation, Computational Materials Science, 95 (2014) 626-636.
[10] P. Walsh, A. Omeltchenko, R.K. Kalia, A. Nakano, P. Vashishta, S. Saini, Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study, Applied physics letters, 82(1) (2003) 118-120.
[11] D. Chocyk, T. Zientarski, Molecular dynamics simulation of Ni thin films on Cu and Au under nanoindentation, Vacuum, 147 (2018) 24-30.
[12] C. Lu, Y. Gao, G. Michal, N.N. Huynh, H.T. Zhu, A.K. Tieu, Atomistic simulation of nanoindentation of iron with different indenter shapes, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 223(7) (2009) 977-984.
[13] T. Fang, W. Chang, Y. Fan, Molecular dynamics of nanoindentation with conical carbon indenters on graphite and diamond, Nano, 5(04) (2010) 231-236.
[14] S. Xu, Q. Wan, Z. Sha, Z. Liu, Molecular dynamics simulations of nano-indentation and wear of the γTi-Al alloy, Computational Materials Science, 110 (2015) 247-253.
[15] S. Goel, N.H. Faisal, X. Luo, J. Yan, A. Agrawal, Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation, Journal of physics D: applied physics, 47(27) (2014) 275304.
[16] A.K. Nair, M.J. Cordill, D. Farkas, W.W. Gerberich, Nanoindentation of thin films: Simulations and experiments, Journal of Materials Research, 24(3) (2009) 1135-1141.
[17] K.V. Reddy, S. Pal, Analysis of deformation behaviour of Al–Ni–Co thin film coated aluminium during nano-indentation: a molecular dynamics study, Molecular Simulation, 44(17) (2018) 1393-1401.
[18] C. Xu, C. Liu, H. Wang, Incipient plasticity of diamond during nanoindentation, RSC Advances, 7(57) (2017) 36093-36100.
[19] L. Yuan, Z. Xu, D. Shan, B. Guo, Atomistic simulation of twin boundaries effect on nanoindentation of Ag(111) films, Applied Surface Science, 258(16) (2012) 6111-6115.
[20] M. Imran, F. Hussain, M. Rashid, S. Ahmad, Dynamic characteristics of nanoindentation in Ni: A molecular dynamics simulation study, Chinese Physics B, 21(11) (2012) 116201.
[21] H. Zhao, P. Zhang, C. Shi, C. Liu, L. Han, H. Cheng, L. Ren, Molecular Dynamics Simulation of the Crystal Orientation and Temperature Influences in the Hardness on Monocrystalline Silicon, Journal of Nanomaterials, 2014 (2014) 365642.
[22] D. Kim, S. Oh, Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation, Nanotechnology, 17(9) (2006) 2259.
[23] Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, Y.-S. Lai, Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon, Applied Surface Science, 254(5) (2007) 1415-1422.
[24] P. Zhu, Y. Hu, H. Wang, Atomistic simulations of the effect of a void on nanoindentation response of nickel, Science China Physics, Mechanics and Astronomy, 53(9) (2010) 1716-1719.
[25] P. Zhao, Y. Guo, Z. Deng, Atomic simulation of void effect on the microstructure evolution and internal stress transmission in nanoindentation, Solid State Communications, 301 (2019) 113694.
[26] J. Zimmerman, C. Kelchner, P. Klein, J. Hamilton, S. Foiles, Surface step effects on nanoindentation, Physical Review Letters, 87(16) (2001) 165507.
[27] E. Lilleodden, J. Zimmerman, S. Foiles, W. Nix, Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation, Journal of the Mechanics and Physics of Solids, 51(5) (2003) 901-920.
[28] D. Feichtinger, P. Derlet, H. Van Swygenhoven, Atomistic simulations of spherical indentations in nanocrystalline gold, Physical Review B, 67(2) (2003) 024113.
[29] X.-L. Ma, W. Yang, Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation, Nanotechnology, 14(11) (2003) 1208.
[30] C.M. Tan, Y.R. Jeng, Y.C. Chiou, Atomistic Simulations of Nanoindentation on Cu (111) with a Void, in: Advanced Materials Research, Trans Tech Publ, 2008, pp. 919-924.
[31] W. Yu, S. Shen, Multiscale analysis of the effects of nanocavity on nanoindentation, Computational Materials Science, 46(2) (2009) 425-430.
[32] S.V. Hosseini, M. Vahdati, A. Shokuhfar, Molecular Dynamics Simulation on Nano-Machining of Single Crystal Copper with a Void, in: Materials with Complex Behaviour II, Springer, 2012, pp. 661-669.
[33] Y. Yang, Y. Li, G. Zhang, Z. Yang, J. Liu, H. Li, J. Zhao, Molecular dynamics simulation on elastoplastic properties of the void expansion in nanocrystalline copper, Journal of Nanoparticle Research, 20(8) (2018) 1-10.
[34] S. Pathak, S.R. Kalidindi, Spherical nanoindentation stress–strain curves, Materials science and engineering: R: Reports, 91 (2015) 1-36.
[35] S. Pathak, J.L. Riesterer, S.R. Kalidindi, J. Michler, Understanding pop-ins in spherical nanoindentation, Applied Physics Letters, 105(16) (2014) 161913.
[36] Y. Gao, C. Lu, N. Huynh, G. Michal, H. Zhu, A. Tieu, Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni, Wear, 267(11) (2009) 1998-2002.
[37] S. Vahid Hosseini, M. Vahdati, A. Shokuhfar, Effect of tool nose radius on nano-machining process by molecular dynamics simulation, in: Defect and Diffusion Forum, Trans Tech Publ, 2011, pp. 977-982.
[38] J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Physical Review B, 38(14) (1988) 9902.
[39] M. Papanikolaou, F.R. Hernandez, K. Salonitis, Investigation of the Subsurface Temperature Effects on Nanocutting Processes via Molecular Dynamics Simulations, Metals, 10(9) (2020) 1220.
[40] S. Goel, X. Luo, R.L. Reuben, W.B. Rashid, Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting, Nanoscale research letters, 6(1) (2011) 1-9.
[41] S.A. Roncancio, D.F. Arias-Mateus, M.M. Gómez-Hermida, J.C. Riaño-Rojas, E. Restrepo-Parra, Molecular dynamics simulations of the temperature effect in the hardness on Cr and CrN films, Applied Surface Science, 258(10) (2012) 4473-4477.
[42] Q.X. Pei, C. Lu, H.P. Lee, Y.W. Zhang, Study of Materials Deformation in Nanometric Cutting by Large-scale Molecular Dynamics Simulations, Nanoscale Research Letters, 4(5) (2009) 444.
[43] N. Oumarou, J.-P. Jehl, R. Kouitat, P. Stempfle, On the variation of mechanical parameters obtained from spherical depth sensing indentation, International Journal of Surface Science and Engineering, 4(4-6) (2010) 416-428.
[44] S.-P. Ju, C.-T. Wang, C.-H. Chien, J. Huang, S.-R. Jian, The nanoindentation responses of nickel surfaces with different crystal orientations, Molecular Simulation, 33(11) (2007) 905-917.
[45] J. Hass, Thomas' calculus, Pearson Education India, 2008.
[46] F.P. Beer, E. Johnston, J. DeWolf, D. Mazurek, Mechanics of materials, New York, (1992).