[1] H. Yamaguchi, G. Kikugawa, Molecular dynamics study on flow structure inside a thermal transpiration flow field, Physics of Fluids, 33(1) (2021) 012005.
[2] S.E. Vargo, E.P. Muntz, Initial results from the first MEMS fabricated thermal transpiration-driven vacuum pump, AIP Conference Proceedings, 585(1) (2001) 502-509.
[3] N.K. Gupta, Y.B. Gianchandani, A planar cascading architecture for a ceramic Knudsen micropump, in: TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, 2009, pp. 2298-2301.
[4] N.V. Toan, N. Inomata, N.H. Trung, T. Ono, Knudsen pump produced via silicon deep RIE, thermal oxidation, and anodic bonding processes for on-chip vacuum pumping, Journal of Micromechanics and Microengineering, 28(5) (2018) 055001.
[5] K. Kugimoto, Y. Hirota, Y. Kizaki, H. Yamaguchi, T. Niimi, Performance prediction method for a multi-stage Knudsen pump, Physics of Fluids, 29(12) (2017) 122002.
[6] J. Ye, J. Shao, J. Xie, Z. Zhao, J. Yu, Y. Zhang, S. Salem, The hydrogen flow characteristics of the multistage hydrogen Knudsen compressor based on the thermal transpiration effect, International Journal of Hydrogen Energy, 44(40) (2019) 22632-22642.
[7] K. Aoki, P. Degond, L. Mieussens, M. Nishioka, S. Takata, Numerical Simulation of a Knudsen Pump Using the Effect of Curvature of the Channel, in: Rarefied Gas Dynamics, Novosibirsk, 2007, pp. 1079-1084.
[8] D.M. Bond, V. Wheatley, M. Goldsworthy, Numerical investigation of curved channel Knudsen pump performance, International Journal of Heat and Mass Transfer, 76 (2014) 1-15.
[9] D.M. Bond, V. Wheatley, M. Goldsworthy, Numerical investigation into the performance of alternative Knudsen pump designs, International Journal of Heat and Mass Transfer, 93 (2016) 1038-1058.
[10] M.S. Mozaffari, E. Roohi, On the thermally-driven gas flow through divergent micro/nanochannels, International Journal of Modern Physics C, 28(12) (2017) 1750143.
[11] G. Tatsios, G. Lopez Quesada, M. Rojas-Cardenas, L. Baldas, S. Colin, D. Valougeorgis, Computational investigation and parametrization of the pumping effect in temperature-driven flows through long tapered channels, Microfluidics and Nanofluidics, 21(5) (2017) 99.
[12] B.-Y. Cao, M. Chen, Z.-Y. Guo, Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation, International Journal of Engineering Science, 44(13) (2006) 927-937.
[13] C. Zhang, Y. Chen, Z. Deng, M. Shi, Role of rough surface topography on gas slip flow in microchannels, Physical Review E, 86(1) (2012) 016319.
[14] O.I. Rovenskaya, G. Croce, Numerical simulation of gas flow in rough microchannels: hybrid kinetic–continuum approach versus Navier–Stokes, Microfluidics and Nanofluidics, 20(5) (2016) 81.
[15] J. Jia, Q. Song, Z. Liu, B. Wang, Effect of wall roughness on performance of microchannel applied in microfluidic device, Microsystem Technologies, 25(6) (2019) 2385-2397.
[16] X. Wang, T. Su, W. Zhang, Z. Zhang, S. Zhang, Knudsen pumps: a review, Microsystems & Nanoengineering, 6(1) (2020) 26.
[17] K. Yamamoto, H. Takeuchi, T. Hyakutake, Effect of Surface Grooves on the Rarefied Gas Flow Between Two Parallel Walls, AIP Conference Proceedings, 762(1) (2005) 156-161.
[18] J. Shao, J. Ye, Y. Zhang, S. Salem, Z. Zhao, J. Yu, Effect of the microchannel obstacles on the pressure performance and flow behaviors of the hydrogen Knudsen compressor, International Journal of Hydrogen Energy, 44(40) (2019) 22691-22703.
[19] J. Ye, J. Shao, Z. Hao, S. Salem, Y. Zhang, Y. Wang, Z. Li, Characteristics of thermal transpiration effect and the hydrogen flow behaviors in the microchannel with semicircular obstacle, International Journal of Hydrogen Energy, 44(56) (2019) 29724-29732.
[20] N. Mirnezhad, A. Amiri-Jaghargh, The study of the effects of triangular roughness on the thermal creep flow in Knudsen pumps with DSMC method, Journal of Solid and Fluid Mechanics, 10(4) (2020) 97-109.
[21] G.E. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation, Springer-Verlag New York, 2005.
[22] W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation, Journal of Statistical Physics, 66(3) (1992) 1011-1044.
[23] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, 1994.
[24] A. Amiri-Jaghargh, E. Roohi, H. Niazmand, S. Stefanov, DSMC Simulation of Low Knudsen Micro/Nanoflows Using Small Number of Particles per Cells, Journal of Heat Transfer, 135(10) (2013).
[25] A. Amiri-Jaghargh, E. Roohi, S. Stefanov, H. Nami, H. Niazmand, DSMC simulation of micro/nano flows using SBT–TAS technique, Computers & Fluids, 102 (2014) 266-276.
[26] W.W. Liou, Y.C. Fang, Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flow Predictions, Computer Modeling in Engineering & Sciences, 1(4) (2000) 119--128.
[27] T. Ohwada, Y. Sone, K. Aoki, Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard‐sphere molecules, Physics of Fluids A: Fluid Dynamics, 1(9) (1989) 1588-1599.
[28] H. Akhlaghi, E. Roohi, Mass flow rate prediction of pressure–temperature-driven gas flows through micro/nanoscale channels, Continuum Mechanics and Thermodynamics, 26(1) (2014) 67-78.
[29] F.J. Alexander, A.L. Garcia, B.J. Alder, Cell size dependence of transport coefficients in stochastic particle algorithms, Physics of Fluids, 10(6) (1998) 1540-1542.
[30] N.G. Hadjiconstantinou, Analysis of discretization in the direct simulation Monte Carlo, Physics of Fluids, 12(10) (2000) 2634-2638.