[1] W. Goldsmith, J.L. Sackman, An experimental study of energy absorption in impact on sandwich plates, International Journal of Impact Engineering, 12(2) (1992) 241-262.
[2] E. Wu, W.-S. Jiang, Axial crush of metallic honeycombs, International Journal of Impact Engineering, 19(5-6) (1997) 439-456.
[3] G. Liaghat, A. Alavinia, A comment on the axial crush of metallic honeycombs by Wu and Jiang, International Journal of Impact Engineering, 28(10) (2003) 1143-1146.
[4] J. Klintworth, W. Stronge, Plane punch indentation of a ductile honeycomb, International journal of mechanical sciences, 31(5) (1989) 359-378.
[5] S.A. Galehdari, M. Kadkhodayan, S. Hadidi-Moud, Low velocity impact and quasi-static in-plane loading on a graded honeycomb structure; experimental, analytical and numerical study, Aerospace Science and Technology, 47 (2015) 425-433.
[6] W. Goldsmith, D.L. Louie, Axial perforation of aluminum honeycombs by projectiles, International Journal of Solids and Structures, 32(8-9) (1995) 1017-1046.
[7] F. Cote, V. Deshpande, N. Fleck, A. Evans, The out-of-plane compressive behavior of metallic honeycombs, Materials Science and Engineering: A, 380(1-2) (2004) 272-280.
[8] S. Heimbs, P. Middendorf, M. Maier, Honeycomb sandwich material modeling for dynamic simulations of aircraft interior components, in: 9th international LS-DYNA users conference, 2006, pp. 1-13.
[9] A.A. Nia, S. Razavi, G. Majzoobi, Ballistic limit determination of aluminum honeycombs—experimental study, Materials Science and Engineering: A, 488(1-2) (2008) 273-280.
[10] T. Asada, Y. Tanaka, N. Ohno, Two-scale and full-scale analyses of elastoplastic honeycomb blocks subjected to flat-punch indentation, International Journal of Solids and Structures, 46(7-8) (2009) 1755-1763.
[11] M. Khoshravan, M.N. Pour, Numerical and experimental analyses of the effect of different geometrical modelings on predicting compressive strength of honeycomb core, Thin-Walled Structures, 84 (2014) 423-431.
[12] Z. Wei, V. Deshpande, A. Evans, K. Dharmasena, D. Queheillalt, H. Wadley, Y. Murty, R. Elzey, P. Dudt, Y. Chen, The resistance of metallic plates to localized impulse, Journal of the Mechanics and Physics of Solids, 56(5) (2008) 2074-2091.
[13] G. Petrone, S. Rao, S. De Rosa, B. Mace, F. Franco, D. Bhattacharyya, Behaviour of fibre-reinforced honeycomb core under low velocity impact loading, Composite Structures, 100 (2013) 356-362.
[14] A.P. Meran, T. Toprak, A. Muğan, Numerical and experimental study of crashworthiness parameters of honeycomb structures, Thin-Walled Structures, 78 (2014) 87-94.
[15] M.Z. Mahmoudabadi, M. Sadighi, Experimental investigation on the energy absorption characteristics of honeycomb sandwich panels under quasi-static punch loading, Aerospace Science and Technology, 88 (2019) 273-286.
[16] S. Wang, H. Wang, Y. Ding, F. Yu, Crushing behavior and deformation mechanism of randomly honeycomb cylindrical shell structure, Thin-Walled Structures, 151 (2020) 106739.
[17] T. Wierzbicki, Crushing analysis of metal honeycombs, International Journal of Impact Engineering, 1(2) (1983) 157-174.
[18] W. Abramowicz, T. Wierzbicki, Axial crushing of multicorner sheet metal columns, (1989).
[19] M.Z. Mahmoudabadi, M. Sadighi, A study on metal hexagonal honeycomb crushing under quasi-static loading, World Academy of Science, Engineering and Technology (53), (2009) 677-681.
[20] M.Z. Mahmoudabadi, M. Sadighi, A theoretical and experimental study on metal hexagonal honeycomb crushing under quasi-static and low velocity impact loading, Materials Science and Engineering: A, 528(15) (2011) 4958-4966.
[21] Z. Li, T. Wang, Y. Jiang, L. Wang, D. Liu, Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression, Composite Structures, 187 (2018) 429-438.
[22] M.Z. Mahmoudabadi, M. Sadighi, A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb–Theoretical and experimental, Materials Science and Engineering: A, 530 (2011) 333-343.