[1] K. Nowak, M. Kupka, J. Maszybrocka, A. Barylski, Effect of thermal oxidation process on wear resistance of B2 iron aluminide, Vacuum. 114 (2015) 221–225.
[2] B.S.J. Kang, R. Cisloiu, Evaluation of fracture behavior of iron aluminides, Theor. Appl. Fract. Mech. 45 (2006) 25–40.
[3] S. Gedevanishvili, S. Deevi, Processing of iron aluminides by pressureless sintering through Fe+Al elemental route, Mater. Sci. Eng. A. 325 (2002) 163–176.
[4] B.H. Rabin, R.N. Wright, Synthesis of iron aluminides from elemental powders: Reaction mechanisms and densification behavior, Metall. Trans. A. 22 (1991) 277–286.
[5] P. Matysik, S. Jozwiak, T. Czujko, The kinetics of non-isothermal iron and aluminum powder mixtures sintering in protective atmosphere, J. Alloys Compd. 549 (2013) 92–99.
[6] X. Wang, J. V. Wood, Y. Sui, H. Lu, Formation of intermetallic compound in iron-aluminum alloys, J. Shanghai Univ. (English Ed. 2 (1998) 305–310.
[7] D.C. Jia, Y. Zhou, T.C. Lei, Microstructure and mechanical properties of Al-12Ti-6Nb prepared by mechanical alloying, 5093 (1997) 300–306.
[8] A. Hibino, Estimation of Kinetic Parameters for Combustion Synthesis of FeAl Intermetallic Compound by Dipping Experiment of Fe Wire into Al Melt, J. Japan Inst. Met. 75 (2011) 332–340.
[9] K.S. Yun, J.H. Lee, C.W. Won, Effect of current application methods on the preparation of Fe–Al intermetallic compounds by field-activated combustion synthesis, Mater. Res. Bull. 35 (2000) 1709–1716.
[10] T. Durejko, M. Ziętala, Z. Bojar, The Structure of FeAl Sinters Fabricated Using Cyclic Loading, Materials, 8 ( 2015) 575-585.
[11] S. Nosewicz, J. Rojek, M. Chmielewski, K. Pietrzak, Discrete Element Modeling of Intermetallic Matrix Composite Manufacturing by Powder Metallurgy, Materials, 12 (2019) 281-299.