[1] M. El-Khabeery, M. El-Axir, Experimental techniques for studying the effects of milling roller-burnishing parameters on surface integrity, International Journal of machine tools and manufacture, 41(12) (2001) 1705-1719.
[2] S. Sattari, A. Atrian, Investigation of deep rolling effects on the fatigue life of Al–SiC nanocomposite, Materials Research Express, 5(1) (2018) 015052.
[3] B. Buldum, S. Cagan, Study of ball burnishing process on the surface roughness and microhardness of AZ91D alloy, Experimental Techniques, 42(2) (2018) 233-241.
[4] H. Luo, J. Liu, L. Wang, Q. Zhong, Investigation of the burnishing process with PCD tool on non-ferrous metals, The International Journal of Advanced Manufacturing Technology, 25(5-6) (2005) 454-459.
[5] D.S. Rao, H.S. Hebbar, M. Komaraiah, U. Kempaiah, Investigations on the effect of ball burnishing parameters on surface hardness and wear resistance of HSLA dual-phase steels, Materials and Manufacturing processes, 23(3) (2008) 295-302.
[6] M.S. John, N. Banerjee, K. Shrivastava, B. Vinayagam, Optimization of roller burnishing process on EN-9 grade alloy steel using response surface methodology, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(8) (2017) 3089-3101.
[7] S. Randjelovic, B. Tadic, P.M. Todorovic, D. Vukelic, D. Miloradovic, M. Radenkovic, C. Tsiafis, Modelling of the ball burnishing process with a high-stiffness tool, The International Journal of Advanced Manufacturing Technology, 81(9-12) (2015) 1509-1518.
[8] W.B. Saï, J. Lebrun, Influence of finishing by burnishing on surface characteristics, Journal of Materials Engineering and Performance, 12(1) (2003) 37-40.
[9] B. Sachin, S. Narendranath, D. Chakradhar, Sustainable diamond burnishing of 17-4 PH stainless steel for enhanced surface integrity and product performance by using a novel modified tool, Materials Research Express, 6(4) (2019) 046501.
[10] B. Sachin, S. Narendranath, D. Chakradhar, Effect of working parameters on the surface integrity in cryogenic diamond burnishing of 17-4 PH stainless steel with a novel diamond burnishing tool, Journal of Manufacturing Processes, 38 (2019) 564-571.
[11] S. Ebeid, T. Ei-Taweel, Surface improvement through hybridization of electrochemical turning and roller burnishing based on the Taguchi technique, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(5) (2005) 423-430.
[12] H. Luo, J. Liu, L. Wang, Q. Zhong, The effect of burnishing parameters on burnishing force and surface microhardness, The International Journal of Advanced Manufacturing Technology, 28(7-8) (2006) 707-713.
[13] I. Ozkul, Ball burnishing process effects on surface roughness for Al 6013 alloy, Turkish Journal of Engineering, 3(1) (2019) 9.
[14] S. Khalilpourazary, J. Salehi, How alumina nanoparticles impact surface characteristics of Al7175 in roller burnishing process, Journal of Manufacturing Processes, 39 (2019) 1-11.
[15] S. Khalilpourazary, S. Meshkat, Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process, The International Journal of Advanced Manufacturing Technology, 71(9-12) (2014) 1599-1610.
[16] B. Mills, Machinability of engineering materials, Springer Science & Business Media, 2012.
[17] J.G. Kaufman, Introduction to aluminum alloys and tempers, ASM international, 2000.
[18] U.G.-T.M.P. PROCESU, Use of grey based Taguchi method in ball burnishing process for the optimization of surface roughness and microhardness of AA 7075 aluminum alloy, Materiali in tehnologije, 44(3) (2010) 129-135.
[19] S. Said, S. Mikhail, M. Riad, Recent processes for the production of alumina nano-particles, Materials Science for Energy Technologies, 3 (2020) 344-363.
[20] Z. Ma, X. Zhao, Q. Tang, Z. Zhou, Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane, international journal of hydrogen energy, 39(10) (2014) 5037-5042.
[21] T. Huang, Y. Xin, T. Li, S. Nutt, C. Su, H. Chen, P. Liu, Z. Lai, Modified graphene/polyimide nanocomposites: reinforcing and tribological effects, ACS applied materials & interfaces, 5(11) (2013) 4878-4891.
[22] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Materialia, 66(8) (2012) 594-597.
[23] R. Jiang, H. Zhu, Y. Fu, S. Jiang, E. Zong, J. Yao, Photocatalytic decolorization of Congo red wastewater by magnetic ZnFe2O4/graphene nanosheets composite under simulated solar light irradiation, Ozone: Science & Engineering, 42(2) (2020) 174-182.
[24] N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of NiO nanoparticles through sol-gel method, Procedia chemistry, 19 (2016) 626-631.
[25] S. Pourmand, M. Abdouss, A. Rashidi, Preparation of nanoporous graphene via nanoporous zinc oxide and its application as a nanoadsorbent for benzene, toluene and xylenes removal, International Journal of Environmental Research, 9(4) (2015) 1269-1276.
[26] E. Klyatskina, A. Borrell, E. Grigoriev, A. Zholnin, M. Salvador, V. Stolyarov, Structure features and properties of graphene/Al 2 O 3 composite, J. Ceram. Sci. Technol, 9 (2018) 215-224.
[27] X. Liu, Y.C. Fan, Q. Feng, L.J. Wang, W. Jiang, Preparation of graphene nanosheet/alumina composites, in: Materials Science Forum, Trans Tech Publ, 2013, pp. 534-538.
[28] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Progress of nanofluid application in machining: a review, Materials and Manufacturing Processes, 30(7) (2015) 813-828.
[29] D.E. ISO, Geometrical Product Specifications (GPS)—Surface Texture: Profile Method: Rules and Procedures for the Assessment of Surface Texture, (1996).
[30] E. ASTM, 92: 2003: Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, (2006).
[31] J. Maximov, A. Anchev, G. Duncheva, N. Ganev, K. Selimov, Influence of the process parameters on the surface roughness, micro-hardness, and residual stresses in slide burnishing of high-strength aluminum alloys, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(8) (2017) 3067-3078.
[32] A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review, Composites Part B: Engineering, 77 (2015) 402-420.
[33] L.-Y. Lin, D.-E. Kim, W.-K. Kim, S.-C. Jun, Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy, Surface and Coatings Technology, 205(20) (2011) 4864-4869.
[34] S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene–aluminum nanocomposites, Materials Science and Engineering: A, 528(27) (2011) 7933-7937.
[35] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano letters, 8(3) (2008) 902-907.
[36] L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites, ACS nano, 5(4) (2011) 3182-3190.
[37] M. Liu, C. Chen, J. Hu, X. Wu, X. Wang, Synthesis of magnetite/graphene oxide composite and application for cobalt (II) removal, The Journal of Physical Chemistry C, 115(51) (2011) 25234-25240.