[1] G. Zhang, S.G. Kandlikar, A critical review of cooling techniques in proton exchange membrane fuel cell stacks, international journal of hydrogen energy, 37(3) (2012) 2412-2429.
[2] T.B. Gorji, A. Ranjbar, Thermal and exergy optimization of a nanofluid-based direct absorption solar collector, Renewable Energy, 106 (2017) 274-287.
[3] M. Bouhalleb, H. Abbassi, Natural convection in an inclined rectangular enclosure filled by CuO–H2O nanofluid, with sinusoidal temperature distribution, International Journal of Hydrogen Energy, 40(39) (2015) 13676-13684.
[4] A. Boualit, N. Zeraibi, T. Chergui, M. Lebbi, L. Boutina, S. Laouar, Natural convection investigation in square cavity filled with nanofluid using dispersion model, International Journal of Hydrogen Energy, 42(13) (2017) 8611-8623.
[5] M. Bovand, S. Rashidi, J. Esfahani, Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle, Energy conversion and management, 97 (2015) 212-223.
[6] S. Jayhooni, M. Rahimpour, Effect of different types of nanofluids on free convection heat transfer around spherical mini-reactor, Superlattices and Microstructures, 58 (2013) 205-217.
[7] R. Jmai, B. Ben-Beya, T. Lili, Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles, Superlattices and Microstructures, 53 (2013) 130-154.
[8] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International journal of heat and mass transfer, 47(24) (2004) 5181-5188.
[9] Y. He, Y. Men, Y. Zhao, H. Lu, Y. Ding, Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions, Applied Thermal Engineering, 29(10) (2009) 1965-1972.
[10] R.M. Moghari, A. Akbarinia, M. Shariat, F. Talebi, R. Laur, Two phase mixed convection Al2O3–water nanofluid flow in an annulus, International Journal of Multiphase Flow, 37(6) (2011) 585-595.
[11] J. Buongiorno, Convective transport in nanofluids, (2006).
[12] M. Corcione, M. Cianfrini, A. Quintino, Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties, International Journal of Thermal Sciences, 71 (2013) 182-195.
[13] M. Corcione, E. Habib, A. Quintino, A two-phase numerical study of buoyancy-driven convection of alumina–water nanofluids in differentially-heated horizontal annuli, International Journal of Heat and Mass Transfer, 65 (2013) 327-338.
[14] H.A. Pakravan, M. Yaghoubi, Analysis of nanoparticles migration on natural convective heat transfer of nanofluids, International Journal of Thermal Sciences, 68 (2013) 79-93.
[15] G.A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure, International Journal of Thermal Sciences, 66 (2013) 51-62.
[16] F. Garoosi, S. Garoosi, K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder technology, 268 (2014) 279-292.
[17] M.A. Sheremet, T. Groşan, I. Pop, Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno's model, Journal of heat transfer, 136(8) (2014).
[18] M.A. Sheremet, I. Pop, M.M. Rahman, Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model, International Journal of Heat and Mass Transfer, 82 (2015) 396-405.
[19] N. Hazeri-Mahmel, Y. Shekari, A. Tayebi, Numerical Study of Mixed Convection Heat Transfer in a Cavity Filled with NonNewtonian Nanofluids Utilizing Two-phase Mixture Model, Amirkabir Journal of Mechanical Engineering, 50(6) (2019) 1199-1212.
[20] S.Y. Motlagh, H. Soltanipour, Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno's two-phase model, International Journal of Thermal Sciences, 111 (2017) 310-320.
[21] S.Y. Motlagh, S. Taghizadeh, H. Soltanipour, Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model, Advanced Powder Technology, 27(6) (2016) 2526-2540.
[22] S.Y. Motlagh, E. Golab, A.N. Sadr, Two-phase modeling of the free convection of nanofluid inside the inclined porous semi-annulus enclosure, International Journal of Mechanical Sciences, 164 (2019) 105183.
[23] G.A. Sheikhzadeh, M. Sepehrnia, M. Rezaie, M. Mollamahdi, Natural Convection of Turbulent Al2O3-Water Nanofluid with Variable Properties in a Cavity with a Heat Source and Heat Sink on Vertical Walls, Amirkabir Journal of Mechanical Engineering, 50(6) (2017) 1237-1250.
[24] H. Sajjadi, M. Gorji, G. Kefayati, D. Ganji, Lattice Boltzmann simulation of turbulent natural convection in tall enclosures using Cu/water nanofluid, Numerical Heat Transfer, Part A: Applications, 62(6) (2012) 512-530.
[25] F. Garoosi, G. Bagheri, F. Talebi, Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside, International Journal of Heat and Mass Transfer, 67 (2013) 362-376.
[26] V. Bianco, O. Manca, S. Nardini, Entropy generation analysis of turbulent convection flow of Al2O3–water nanofluid in a circular tube subjected to constant wall heat flux, Energy Conversion and Management, 77 (2014) 306-314.
[27] S. Bahrehmand, A. Abbassi, Heat transfer and performance analysis of nanofluid flow in helically coiled tube heat exchangers, Chemical Engineering Research and Design, 109 (2016) 628-637.
[28] F. Garoosi, F. Hoseininejad, Numerical study of natural and mixed convection heat transfer between differentially heated cylinders in an adiabatic enclosure filled with nanofluid, Journal of Molecular Liquids, 215 (2016) 1-17.
[29] M. Ghanbarpour, E.B. Haghigi, R. Khodabandeh, Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid, Experimental Thermal and Fluid Science, 53 (2014) 227-235.
[30] P.A. Durbin, Near-wall turbulence closure modeling without “damping functions”, Theoretical and computational fluid dynamics, 3(1) (1991) 1-13.
[31] P. Durbin, Application of a near-wall turbulence model to boundary layers and heat transfer, International Journal of Heat and Fluid Flow, 14(4) (1993) 316-323.
[32] P.A. Durbin, Separated flow computations with the k-epsilon-v-squared model, AIAA journal, 33(4) (1995) 659-664.
[33] F.-S. Lien, G. Kalitzin, Computations of transonic flow with the v2–f turbulence model, International Journal of Heat and Fluid Flow, 22(1) (2001) 53-61.
[34] A. Sveningsson, L. Davidson, Assessment of realizability constraints in v2–f turbulence models, International journal of heat and fluid flow, 25(5) (2004) 785-794.
[35] S. Patankar, Numerical heat transfer and fluid flow, Taylor & Francis, 2018.
[36] C. Ho, W. Liu, Y. Chang, C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences, 49(8) (2010) 1345-1353.
[37] R. Henkes, F. Van Der Vlugt, C. Hoogendoorn, Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models, International Journal of Heat and Mass Transfer, 34(2) (1991) 377-388.
[38] N.C. Markatos, K. Pericleous, Laminar and turbulent natural convection in an enclosed cavity, International journal of heat and mass transfer, 27(5) (1984) 755-772.
[39] G. Barakos, E. Mitsoulis, D. Assimacopoulos, Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions, International journal for numerical methods in fluids, 18(7) (1994) 695-719.
[40] M. Goodarzi, M.R. Safaei, K. Vafai, G. Ahmadi, M. Dahari, S.N. Kazi, N. Jomhari, Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model, International Journal of Thermal Sciences, 75 (2014) 204-220 1290-0729.