[1] H. Cruijssen, M. Ellenbroek, M. Henderson, H. Petersen, P. Verzijden, M. Visser, The European Robotic Arm: A High-Performance Mechanism Finally on its way to Space, in 42nd Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center, 2014
[2] P.J. Lambooy, W.M. Mandersloot, R.H. Bentall, Some mechanical design aspects of the European Robotic Arm, Proceedings of the 29th Aerospace Mechanisms Symposium. Johnson Space Center, Houston, Texas, (1995) 17–29.
[3] R. Boumans, C. Heemskerk, The European robotic arm for the international space station, Robotics and Autonomous Systems, 23(1-2) (1998) 17-27.
[4] F. Feng, L. Tang, J. Xu, H. Liu, Y. Liu, A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture, Science China Technological Sciences, 59(11) (2016) 1621-1638.
[5] F. Romanelli, Hybrid control techniques for static and dynamic environments: a step towards robot-environment interaction, in: Robot Manipulators New Achievements, IntechOpen, 29 (2010) 551–576.
[6] F.A.A. Cheein, F. di Sciascio, J.M. Toibero, R. Carelli, Robot Manipulator Probabilistic Workspace Applied to Robotic Assistance, Robot Manipulators New Achievements, IntechOpen, 1(1) (2011).
[7] W. Liu, D. Chen, J. Steil, Analytical inverse kinematics solver for anthropomorphic 7-DOF redundant manipulators with human-like configuration constraints, Journal of Intelligent & Robotic Systems, 86(1) (2017) 63-79.
[8] K.D. Kendricks, A kinematic analysis of the gmf a-510 robot: An introduction and application of groebner basis theory, Journal of Interdisciplinary Mathematics, 16(2-3) (2013) 147-169.
[9] K. Kendricks, Solving the inverse kinematic robotics problem: A comparison study of the Denavit-Hartenberg matrix and Groebner basis theory, PhD Thesis, Auburn University Libraries, Auburn, Alabama, 2007
[10] J.F.A. Díaz, M.S. Dutra, F.A.d.N.C. Pinto, Kinematical and dynamical models of KR 6 KUKA robot, including the kinematic control in a parallel processing platform, Robot manipulators new achievements, IntechOpen, (2010) 601-620.
[11] C. Lee, M. Ziegler, Geometric approach in solving inverse kinematics of PUMA robots, IEEE Transactions on Aerospace and Electronic Systems, (6) (1984) 695-706.
[12] S.N. Nabavi, A. Akbarzadeh, J. Enferadi, A Study on Kinematics and Workspace Determination of a General 6-P US Robot, Journal of Intelligent & Robotic Systems, 91(3-4) (2018) 351-362.
[13] Z. Xie, Kinematic, dynamic and accuracy reliablity analysis of 6 degree-of-freedom robotic arm, PhD Thesis, University of Missouri, Columbia, 2013
[14] M. Shahinpoor, M. Jamshidi, Y.T. Kim, Exact solution to the inverse kinematics problem of a standard 6‐axis robot manipulator, Journal of robotic systems, 3(3) (1986) 259-280.
[15] J.D. Sun, G.Z. Cao, W.B. Li, Y.X. Liang, S.-D. Huang, Analytical inverse kinematic solution using the DH method for a 6-DOF robot, in: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), IEEE, 2017, pp. 714-716.
[16] J. Xie, W. Qiang, B. Liang, C. Li, Inverse kinematics problem for 6-DOF space manipulator based on the theory of screws, in: 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2007, pp. 1659-1663.
[17] S. Sagara, Y. Taira, Digital Control of Free Floating Space Robot Manipulators Using Transpose of Generalized Jacobian Matrix, in: Robot Manipulators New Achievements, IntechOpen, (2010) 361.
[18] I. Duleba, Kinematic Models of Doubly Generalized N-trailer Systems, Journal of Intelligent & Robotic Systems, 94(1) (2019) 135-142.
[19] W. Xu, Z. Mu, T. Liu, B. Liang, A modified modal method for solving the mission-oriented inverse kinematics of hyper-redundant space manipulators for on-orbit servicing, Acta Astronautica, 139 (2017) 54-66.
[20] Z.Y. Li, D.J. Zhao, J.S. Zhao, Structure synthesis and workspace analysis of a telescopic spraying robot, Mechanism and Machine Theory, 133 (2019) 295-310.
[21] J. Oh, H. Bae, J.-H. Oh, Analytic inverse kinematics considering the joint constraints and self-collision for redundant 7DOF manipulator, in: 2017 First IEEE International Conference on Robotic Computing (IRC), IEEE, 2017, pp. 123-128.
[22] W. Xu, Z. Hu, L. Yan, H. Yuan, B. Liang, Modeling and planning of a space robot for capturing tumbling target by approaching the Dynamic Closest Point, Multibody System Dynamics, 47(3) (2019) 203-241.
[23] R. Ghaedrahmati, A. Raoofian, A. Kamali, A. Taghvaeipour, An enhanced inverse dynamic and joint force analysis of multibody systems using constraint matrices, Multibody System Dynamics, 46(4) (2019) 329-353.
[24] M. Ellenbroek, J. Schilder, On the use of absolute interface coordinates in the floating frame of reference formulation for flexible multibody dynamics, Multibody system dynamics, 43(3) (2018) 193-208.
[25] A. Müller, Screw and Lie group theory in multibody kinematics, Multibody System Dynamics, 43(1) (2018) 37-70.
[26] K. Komoda, H. Wagatsuma, Energy-efficacy comparisons and multibody dynamics analyses of legged robots with different closed-loop mechanisms, Multibody System Dynamics, 40(2) (2017) 123-153.
[27] J.H. Ginsberg, Advanced engineering dynamics, Cambridge University Press, 1998