[1] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015), 56 (2014) 1078-1113.
[2] S. Shakiba, M.R. Zakerzadeh, M. Ayati, Experimental characterization and control of a magnetic shape memory alloy actuator using the modified generalized rate-dependent Prandtl–Ishlinskii hysteresis model, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, (2018) 0959651818758910.
[3] S.Shakiba, A. Yousefi Koma, M. Jokar, M.R. Zakerzadeh, H. Basaeri, Modeling and characterization of the shape memory alloy–based morphing wing behavior using proposed rate-dependent Prandtl-Ishlinskii models, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, (2019) 1-16.
[4] A. Nassiri-monfared, M. Baghani, M.R. Zakerzadeh, P. Fahimi, Developing a semi-analytical model for thermomechanical response of SMA laminated beams, considering SMA asymmetric behavior, Meccanica, 53(4) (2018) 957-971.
[5] F. Mirzakhani, S. Ayati, P. Fahimi, M. Baghani, Online force control of a shape-memory-alloy-based 2 degree-of-freedom human finger via inverse model and proportional–integral–derivative compensator, Journal of Intelligent Material Systems and Structures, 30(10) (2019) 1538-1548.
[6] J.-Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie, N. Chaillet, Modeling rearrangement process of martensite platelets in a magnetic shape memory alloy Ni2MnGa single crystal under magnetic field and (or) stress action, Journal of intelligent material systems and structures, 18(3) (2007) 289-299.
[7] S. Shakki, M.R. Zakerzadeh, Modeling and control of a shape memory alloy actuator using fuzzy sliding mode controller, Modares Mechanical Engineering, 16(7) (2016(in Persian)) 353-360.
[8] D. Hughes, J.T. Wen, Preisach modeling of piezoceramic and shape memory alloy hysteresis, Smart materials and structures, 6(3) (1997) 287.
[9] G. Song, V. Chaudhry, C. Batur, A neural network inverse model for a shape memory alloy wire actuator, Journal of intelligent material systems and structures, 14(6) (2003) 371-377.
[10] G. Song, V. Chaudhry, C. Batur, Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller, Smart Materials and Structures, 12(2) (2003) 223.
[11] J. Ko, M.B. Jun, G. Gilardi, E. Haslam, E.J. Park, Fuzzy PWM-PID control of cocontracting antagonistic shape memory alloy muscle pairs in an artificial finger, Mechatronics, 21(7) (2011) 1190-1202.
[12] S. Shakki, M.R. Zakerzadeh, M. Ayati, O. Jeddinia, Modeling and experimental verification of a magnetic shape memory alloy actuator behavior using modified generalized rate-dependent Prandtl-Ishlinskii model, Modares Mechanical Engineering, 16(11) (2017(in persian)) 389-396.
[13] B. Minorowicz, G. Leonetti, F. Stefanski, G. Binetti, D. Naso, Design, modelling and control of a micro-positioning actuator based on magnetic shape memory alloys, Smart Materials and Structures, 25(7) (2016) 075005.
[14] H. Mai, G. Song, X. Liao, Time-delayed dynamic neural network-based model for hysteresis behavior of shape-memory alloys, Neural Computing and Applications, 27(6) (2016) 1519-1531.
[15] H. Wang, G. Song, Innovative NARX recurrent neural network model for ultra-thin shape memory alloy wire, Neurocomputing, 134 (2014) 289-295.
[16] M. Lallart, K. Li, Z. Yang, W. Wang, System-level modeling of nonlinear hysteretic piezoelectric actuators in quasi-static operations, Mechanical Systems and Signal Processing, 116 (2019) 985-996.
[17] S. Yi, B. Yang, G. Meng, Ill-conditioned dynamic hysteresis compensation for a low-frequency magnetostrictive vibration shaker, Nonlinear Dynamics, 96(1) (2019) 535-551.
[18] H. Liu, S. Pu, J. Cao, X. Yang, Z. Wang, Torque Ripple Mitigation of T-3L Inverter Fed Open-End Doubly-Salient Permanent-Magnet Motor Drives Using Current Hysteresis Control, Energies, 12(16) (2019) 3109.
[19] S. Çoruh, F. Geyikçi, E. Kılıç, U. Çoruh, The use of NARX neural network for modeling of adsorption of zinc ions using activated almond shell as a potential biosorbent, Bioresource technology, 151 (2014) 406-410.
[20] S. Shakki, A. Yousefi-Koma, M. Jokar, M.R. Zakerzadeh, H. Basaeri, Hysteresis Modeling of Shape Memory Alloy Actuators using Generalized Rate-Dependent Prandtl-Ishlinskii Model, in: Iranian Society of Acoustics and Vibration(ISAV), Iran, Tehran, 2016.