A Mitral Heart Valve Prototype Using Sustainable Polyurethane Polymer: Fabricated by 3D Bioprinter, Tested by Molecular Dynamics Simulation

Document Type : Research Article


1 Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran

2 M.D, Resident of Internal Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran

3 New Technology Research Center, Amirkabir University of Technology, Tehran, Iran

4 Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

5 Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran


Multiple diseases can cause deformities in the structure of the heart valve and the heart valve function, which leads to the patient's physical condition disorders and medical treatments like valve replacement surgery subsequently. In this case, artificial heart valves are used extensively, which generally are made of biocompatible (biologic) or metal (mechanical) materials. Thermoplastic Polyurethane is one of the best choices for the replacement of artificial heart valves due to their high mechanical stability, which makes the heart valve function last for a long-time. Therefore, the artificial heart valves were characterized by a scanning electron microscope analysis, and molecular dynamics simulation was conducted to predict the mechanical performance of the artificial heart valves in this study. Also, the tensile strength, strain at fracture, permeability, and ultimate tensile strength were evaluated to monitor the mechanical property of these novel artificial heart valves. The obtained biological and mechanical properties of the vessel showed a suitable strain percentage at the fracture point and low permeability of the saline into the vessel. Also, about 11% increase in diameter, lead to a nearly 0.09 increase in mechanical performance. Although as surface analysis indicated, the permeability of the inner and outer layer of the artificial heart valves is in the range of 20% and 25%.


Main Subjects

[1]      J.N. Saour, J.O. Sieck, L.A.R. Mamo, A.S. Gallus, Trial of different intensities of anticoagulation in patients with prosthetic heart valves, N. Engl. J. Med. 322 (1990) 428–432.
[2]      W. Vongpatanasin, L.D. Hillis, R.A. Lange, Prosthetic heart valves, N. Engl. J. Med. 335 (1996) 407–416.
[3]      K.K. Yeo, N.D.M. Foin, Device for cardiac valve repair and method of implanting the same, (2019).
[4]      J.W. Eikelboom, S.J. Connolly, M. Brueckmann, C.B. Granger, A.P. Kappetein, M.J. Mack, J. Blatchford, K. Devenny, J. Friedman, K. Guiver, Dabigatran versus warfarin in patients with mechanical heart valves, N Engl J Med. 369 (2013) 1206–1214.
[5]      J. Yang, M.L. Pease, S.H. Heneveld, B.G. Walsh, Methods and apparatuses for deploying minimally-invasive heart valves, (2016).
[6]      P. Pibarot, J.G. Dumesnil, Prosthetic heart valves: selection of the optimal prosthesis and long-term management, Circulation. 119 (2009) 1034–1048.
[7]      E. Karamian, A. Nasehi, S. Saber-Samandari, A. Khandan, Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique, Nanomedicine J. 4 (2017) 177–183.
[8]      M. Razavi, A. Khandan, Safety, regulatory issues, long-term biotoxicity, and the processing environment, in: Nanobiomaterials Sci. Dev. Eval., Elsevier, 2017: pp. 261–279.
[9]      A. Khandan, H. Jazayeri, M.D. Fahmy, M. Razavi, Hydrogels: Types, structure, properties, and applications, Biomat Tiss Eng. 4 (2017) 143–169.
[10]    S.J. Rowe, L. Wood, H. Bourang, G. Bakis, B. Spenser, N. Benichou, Y. Keidar, A. Bash, Methods for rapid deployment of prosthetic heart valves, (2010).
[11]    M.A. Salami, F. Kaveian, M. Rafienia, S. Saber-Samandari, A. Khandan, M. Naeimi, Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications, J. Med. Signals Sens. 7 (2017) 228.
[12]    A. Farazin, H.A. Aghdam, M. Motififard, F. Aghadavoudi, A. Kordjamshidi, S. Saber-Samandari, S. Esmaeili, A. Khandan, A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical Investigation, J. Nanoanalysis. (2019).
[13]    B. Kamyab Moghadas, M. Azadi, Fabrication of Nanocomposite Foam by Supercritical CO2 Technique for Application in Tissue Engineering, J. Tissues Mater. 2 (2019) 23–32.
[14]    B.K. Moghadas, A. Akbarzadeh, M. Azadi, A. Aghili, A.S. Rad, S. Hallajian, The morphological properties and biocompatibility studies of synthesized nanocomposite foam from modified polyethersulfone/graphene oxide using supercritical CO2, J. Macromol. Sci. Part A. 57 (2020) 451–460.
[15]    A. Kordjamshidi, S. Saber-Samandari, M.G. Nejad, A. Khandan, Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation, Ceram. Int. 45 (2019) 14126–14135.
[16]    L.A. Harker, S.J. Slichter, Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves, N. Engl. J. Med. 283 (1970) 1302–1305.
[17]    H.M. Connolly, J.L. Crary, M.D. McGoon, D.D. Hensrud, B.S. Edwards, W.D. Edwards, H. V Schaff, Valvular heart disease associated with fenfluramine–phentermine, N. Engl. J. Med. 337 (1997) 581–588.
[18]    B. Iung, G. Baron, E.G. Butchart, F. Delahaye, C. Gohlke-Bärwolf, O.W. Levang, P. Tornos, J.-L. Vanoverschelde, F. Vermeer, E. Boersma, A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease, Eur. Heart J. 24 (2003) 1231–1243.
[19]    B.L. Roth, Drugs and valvular heart disease, N Engl J Med. 356 (2007) 6–9.
[20]    S.M. Mehta, T.X. Aufiero, W.E. Pae Jr, C.A. Miller, W.S. Pierce, Combined Registry for the Clinical Use of Mechanical Ventricular Assist Pumps and the Total Artificial Heart in conjunction with heart transplantation: sixth official report--1994., J. Hear. Lung Transplant. Off. Publ. Int. Soc. Hear. Transplant. 14 (1995) 585–593.
[21]    A. Bolz, M. Schaldach, Artificial heart valves: Improved blood compatibility by PECVD a‐SiC: H coating, Artif. Organs. 14 (1990) 260–269.
[22]    L.P. Dasi, H.A. Simon, P. Sucosky, A.P. Yoganathan, Fluid mechanics of artificial heart valves, Clin. Exp. Pharmacol. Physiol. 36 (2009) 225–237.
[23]    X. Ye, Y. Shao, M. Zhou, J. Li, L. Cai, Research on micro-structure and hemo-compatibility of the artificial heart valve surface, Appl. Surf. Sci. 255 (2009) 6686–6690.
[24]    D.J. Evans, S. Murad, Singularity free algorithm for molecular dynamics simulation of rigid polyatomics, Mol. Phys. 34 (1977) 327–331.
[25]    S. Esmaeili, M. Shahali, A. Kordjamshidi, Z. Torkpoor, F. Namdari, S.S. Samandari, M. Ghadiri Nejad, A. Khandan, An artificial blood vessel fabricated by 3D printing for pharmaceutical application, Nanomedicine J. 6 (2019) 183–194.
[26]    C.G. Del, A. Bianco, M. Grigioni, Electrospun bioresorbable trileaflet heart valve prosthesis for tissue engineering: in vitro functional assessment of a pulmonary cardiac valve design., Ann. Ist. Super. Sanita. 44 (2008) 178–186.
[27]    S. Esmaeili, H.A. Aghdam, M. Motififard, S. Saber-Samandari, A.H. Montazeran, M. Bigonah, E. Sheikhbahaei, A. Khandan, A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation, Eur. J. Orthop. Surg. Traumatol. 30 (2020) 123–131.
[28]    M. Monshi, S. Esmaeili, A. Kolooshani, B.K. Moghadas, S. Saber-Samandari, A. Khandan, A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application, Nanomedicine J. 7 (2020) 138–148.
[29]    M. Bahadori, M. Yaghoubi, E. Haghgoshyie, M. Ghasemi, E. Hasanpoor, Patients’ and physicians’ perspectives and experiences on the quality of medical consultations: a qualitative evidence., Int. J. Evid. Based. Healthc. (2019).
[30]    M. Ghadirinejad, E. Atasoylu, G. Izbirak, M. GHA-SEMI, A Stochastic Model for the Ethanol Pharmacokinetics, Iran. J. Public Health. 45 (2016) 1170.
[31]    F. Aghadavoudi, H. Golestanian, Y. Tadi Beni, Investigating the effects of resin crosslinking ratio on mechanical properties of epoxy-based nanocomposites using molecular dynamics, Polym. Compos. 38 (2017) E433–E442. https://doi.org/10.1002/pc.24014.
[32]    farshid Aghadavoudi, H. Golestanian*, Y. Tadi Beni, Investigation of CNT Defects on Mechanical Behavior of Cross linked Epoxy based Nanocomposites by Molecular Dynamics, ADMT J. 9 (2016).
[33]    R. Moradi-Dastjerdi, F. Aghadavoudi, Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT, Compos. Struct. 200 (2018) 839–848.
[34]    F. Aghadavoudi, H. Golestanian, K.A. Zarasvand, Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modelling, Polym. Bull. 76 (2019) 4275–4294. https://doi.org/10.1007/s00289-018-2602-9.
[35]    M.A. Maghsoudlou, R.B. Isfahani, S. Saber-Samandari, M. Sadighi, Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations, Compos. Part B Eng. 175 (2019) 107119.
[36]    M. Motififard, M. Pesteh, M.R. Etemadifar, S. Shirazinejad, Causes and rates of revision total knee arthroplasty: Local results from Isfahan, Iran, Adv. Biomed. Res. 4 (2015).
[37]    S. Sahmani, A. Khandan, S. Esmaeili, S. Saber-Samandari, M.G. Nejad, M.M. Aghdam, Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: Fabrication, characterization and simulation, Ceram. Int. 46 (2020) 2447–2456.
[38]    M. Nourbakhsh, M. Motififard, H. Shemshaki, M. reza Etemadifar, A. Zarezade, Z. Farajzadegan, F. Mazoochian, Efficacy of tibial proximal osteotomy in correction of lower limb alignment indexes in patients with osteoarthritis in medial compartment of knee, Med. Arch. 66 (2012) 58.
[39]    M.A. Tahririan, M. Motififard, A. Omidian, H.A. Aghdam, A. Esmaeali, Relationship between bone mineral density and serum vitamin D with low energy hip and distal radius fractures: A case-control study, Arch. Bone Jt. Surg. 5 (2017) 22.
[40]    M. Motififard, M. Heidari, A. Nemati, No difference between wound closure in extension or flexion for range of motion following total knee arthroplasty: a randomized clinical trial, Knee Surgery, Sport. Traumatol. Arthrosc. 24 (2016) 74–78.
[41]    H.A. Aghdam, E. Sanatizadeh, M. Motififard, F. Aghadavoudi, S. Saber-Samandari, S. Esmaeili, E. Sheikhbahaei, M. Safari, A. Khandan, Effect of calcium silicate nanoparticle on surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application, Powder Technol. 361 (2020) 917–929.
[42]    R. Moradi‐Dastjerdi, G. Payganeh, M. Tajdari, Resonance in functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube, Polym. Compos. 38 (2017) E542–E552.
[43]    M. Moeini, R. Barbaz Isfahani, S. Saber-Samandari, M.M. Aghdam, Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites, Mol. Simul. 46 (2020) 476–486.
[44]    M. Hadipeykani, D. Toghraie, Thermomechanical Properties of the Polymeric Nanocomposite Predicted by Molecular Dynamics, ADMT J. 12 (2019) 25–32.
[45]    A. Farazin, F. Aghadavoudi, M. Motififard, S. Saber-Samandari, A. Khandan, Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles, J. Appl. Comput. Mech. (2020).