[1] Y.-h. Xu, T. Nakajima, A. Ohki, Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite, Journal of Hazardous Materials, 92(3) (2002) 275-287.
[2] P. Chutia, S. Kato, T. Kojima, S. Satokawa, Arsenic adsorption from aqueous solution on synthetic zeolites, Journal of Hazardous Materials, 162(1) (2009) 440-447.
[3] P. Chutia, S. Kato, T. Kojima, S. Satokawa, Adsorption of As(V) on surfactant-modified natural zeolites, Journal of Hazardous Materials, 162(1) (2009) 204-211.
[4] S.R. Wickramasinghe, B. Han, J. Zimbron, Z. Shen, M.N. Karim, Arsenic removal by coagulation and filtration: comparison of groundwaters from the United States and Bangladesh, Desalination, 169(3) (2004) 231-244.
[5] L.M. Camacho, R.R. Parra, S. Deng, Arsenic removal from groundwater by MnO2-modified natural clinoptilolite zeolite: Effects of pH and initial feed concentration, Journal of Hazardous Materials, 189(1) (2011) 286-293.
[6] S. Mandal, M.K. Sahu, R.K. Patel, Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43), Water Resources and Industry, 4 (2013) 51-67.
[7] W. Chen, R. Parette, J. Zou, F.S. Cannon, B.A. Dempsey, Arsenic removal by iron-modified activated carbon, Water Research, 41(9) (2007) 1851-1858.
[8] A.I. Zouboulis, I.A. Katsoyiannis, Arsenic Removal Using Iron Oxide Loaded Alginate Beads, Industrial & Engineering Chemistry Research, 41(24) (2002) 6149-6155.
[9] D. Mohan, C.U. Pittman, Arsenic removal from water/wastewater using adsorbents—A critical review, Journal of Hazardous Materials, 142(1) (2007) 1-53.
[10] E.O. Kartinen, C.J. Martin, An overview of arsenic removal processes, Desalination, 103(1) (1995) 79-88.
[11] M.-C. Shih, An Overview of Arsenic Removal by Pressure-Driven Membrane Processes, 172 (2005) 85-97.
[12] M. Iwamoto, H. Kitagawa, Y. Watanabe, Highly Effective Removal of Arsenate and Arsenite Ion through Anion Exchange on Zirconium Sulfate-Surfactant Micelle Mesostructure, 31 (2002) 814.
[13] V. Chandra, J. Park, Y. Chun, J.W. Lee, I.-C. Hwang, K.S. Kim, Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal, ACS Nano, 4(7) (2010) 3979-3986.
[14] Z. Zhou, Y.-g. Liu, S.-b. Liu, H.-y. Liu, G.-m. Zeng, X.-f. Tan, C.-p. Yang, Y. Ding, Z.-l. Yan, X.-x. Cai, Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar, Chemical Engineering Journal, 314 (2017) 223-231.
[15] S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron, Environmental Science & Technology, 39(5) (2005) 1291-1298.
[16] J.L. Mathieu, A.J. Gadgil, S.E. Addy, K. Kowolik, Arsenic remediation of drinking water using iron-oxide coated coal bottom ash, J Environ Sci Health A Tox Hazard Subst Environ Eng, 45(11) (2010) 1446-1460.
[17] S. Lunge, S. Singh, A. Sinha, Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal, Journal of Magnetism and Magnetic Materials, 356 (2014) 21-31.
[18] D. Setyono, S. Valiyaveettil, Chemically Modified Sawdust as Renewable Adsorbent for Arsenic Removal from Water, ACS Sustainable Chemistry & Engineering, 2(12) (2014) 2722-2729.
[19] R. Liu, L. Zhu, Z. He, H. Lan, H. Liu, J. Qu, Simultaneous removal of arsenic and fluoride by freshly-prepared aluminum hydroxide, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466 (2015) 147-153.
[20] M. Šiljeg, L. Foglar, I. Gudelj, The removal of arsenic from water with natural and modified clinoptilolite, Chemistry and Ecology, 28(1) (2012) 75-87.
[21] Q. Zhou, J. Wang, X. Liao, J. Xiao, H. Fan, Removal of As (III) and As (V) from water using magnetic core-shell nanomaterial Fe3O4@ polyaniline, Int J Green Technol, 1 (2015) 55-64.
[22] T. Stanić, A. Daković, A. Živanović, M. Tomašević-Čanović, V. Dondur, S. Milićević, Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff, Environmental Chemistry Letters, 7(2) (2009) 161-166.
[23] L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal, Journal of Hazardous Materials, 217-218 (2012) 439-446.
[24] Lalhmunsiama, R.R. Pawar, S.-M. Hong, K.J. Jin, S.-M. Lee, Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) from aqueous solutions, Journal of Molecular Liquids, 240 (2017) 497-503.
[25] N. Gharehaghaji, B. Divband, L. Zareei, Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast, Journal of Magnetism and Magnetic Materials, 456 (2018) 136-141.
[26] C.R. Melo, H.G. Riella, N.C. Kuhnen, E. Angioletto, A.R. Melo, A.M. Bernardin, M.R. da Rocha, L. da Silva, Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic, Materials Science and Engineering: B, 177(4) (2012) 345-349.
[27] A.M. Yusof, N.A. Malek, Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y, J Hazard Mater, 162(2-3) (2009) 1019-1024.
[28] Z. Yan, Z. Lin, M. Kai, M. Guozhu, The surface modification of zeolite 4A and its effect on the water-absorption capability of starch-g-poly (acrylic acid) composite, Clays and Clay Minerals, 62(3) (2014) 211-223.
[29] U.K. Sahu, S. Sahu, S.S. Mahapatra, R.K. Patel, Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for As(III) and As(V): Material preparation, characterization and adsorption mechanism study, Journal of Molecular Liquids, 243 (2017) 395-405.
[30] M. Khatamian, N. Khodakarampoor, M. Saket-Oskoui, Efficient removal of arsenic using graphene-zeolite based composites, Journal of Colloid and Interface Science, 498 (2017) 433-441.
[31] M. Fan, T. Li, J. Hu, R. Cao, X. Wei, X. Shi, W. Ruan, Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites, Materials (Basel), 10(5) (2017).
[32] D. Krishna, R.P. Sree, Artificail Neural Network (ANN) Approach for Modeling Chromium (VI) Adsorption from Aqueous Solution Using a Borasus Flabellifer Coir Powder, International Journal of Applied Science and Engineering, 12(3) (2014) 177-192.
[33] A. Kardam, K.R. Raj, J.K. Arora, M.M. Srivastava, S. Srivastava, Artificial Neural Network Modeling for Sorption of Cadmium from Aqueous System by Shelled Moringa Oleifera Seed Powder as an Agricultural Waste, Journal of Water Resource and Protection, Vol.02No.04 (2010) 339-344.
[34] B. Singha, N. Bar, S.K. Das, The use of artificial neural networks (ANN) for modeling of adsorption of Cr(VI) ions, Desalination and Water Treatment, 52(1-3) (2014) 415-425.
[35] H. Esfandian, M. Parvini, B. Khoshandam, A. Samadi-Maybodi, Artificial neural network (ANN) technique for modeling the mercury adsorption from aqueous solution using Sargassum Bevanom algae, Desalination and Water Treatment, 57(37) (2016) 17206-17219.
[36] S. Zavareh, Z. Farrokhzad, F. Darvishi, Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water, Ecotoxicol Environ Saf, 155 (2018) 1-8.
[37] W.-M. Xie, F.-P. Zhou, X.-L. Bi, D.-D. Chen, J. Li, S.-Y. Sun, J.-Y. Liu, X.-Q. Chen, Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions, Journal of Hazardous Materials, 358 (2018) 441-449.
[38] A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. da Silva, Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener, Journal of Colloid and Interface Science, 367(1) (2012) 34-39.
[39] T. Qian, J. Li, Synthesis of Na-A zeolite from coal gangue with the in-situ crystallization technique, Advanced Powder Technology, 26(1) (2015) 98-104.
[40] A. Shoumkova, V. Stoyanova, SEM–EDX and XRD characterization of zeolite NaA, synthesized from rice husk and aluminium scrap by different procedures for preparation of the initial hydrogel, Journal of Porous Materials, 20(1) (2013) 249-255.
[41] X. Zhang, D. Tang, G. Jiang, Synthesis of zeolite NaA at room temperature: The effect of synthesis parameters on crystal size and its size distribution, Advanced Powder Technology, 24(3) (2013) 689-696.
[42] A. Khataee, A. Khani, Modeling of Nitrate Adsorption on Granular Activated Carbon (GAC) using Artificial Neural Network (ANN), in: International Journal of Chemical Reactor Engineering, (2009).
[43] M.V. Nagarpita, P. Roy, S.B. Shruthi, R.R.N. Sailaja, Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes, Int J Biol Macromol, 102 (2017) 1226-1240.