[1] J.S. Pang, J.C. Trinkle, G. Lo, A complementarity approach to a quasistatic multi-rigid-body contact problem, Computational Optimization and Applications, 5(2) (1996) 139-154.
[2] P.E. Dupont, S.P. Yamajako, Jamming and wedging in constrained rigid body dynamics, in: Proceeding of the IEEE International Conference on Robotics and Automation, San Diego, 1994, pp. 2349-2354.
[3] J.C. Trinkle, D.C. Zeng, Prediction of the quasistatic planar motion of a contacted rigid body, IEEE Transactions on Robotics and Automation, 11(2) (1995) 229-246.
[4] J.C. Trinkle, S.L. Yeap, L. Han, When quasistatic jamming is impossible, in: IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 1996, pp. 3401-3406.
[5] D.J. Balkcom, J.C. Trinkle, Computing wrench cones for planar rigid body contact tasks, International Journal of Robotics Research, 21(12) (2002) 1053-1066.
[6] T. Liu, M.Y. Wang, Computation of three-dimensional rigid-body dynamics with multiple unilateral contacts using time-stepping and Gauss-Seidel methods, IEEE Transactions on Automation Science and Engineering, 2(1) (2005) 19-31.
[7] T. Liu, M.Y. Wang, K.H. Low, Non-jamming conditions in multi-contact rigid-body dynamics, Multibody System Dynamics, 22(2) (2009) 269-295.
[8] J. Bender, K. Erleben, J. Trinkle, Interactive simulation of rigid body dynamics in computer graphics, in: Computer Graphics Forum, 2014, pp. 246-270.
[9] D.M. Flickinger, J. Williams, J.C. Trinkle, Performance of a method for formulating geometrically exact complementarity constraints in multibody dynamic simulation, Journal of Computational and Nonlinear Dynamics, 10(1) (2014) 1-12.
[10] Y. Lu, J. Williams, J. Trinkle, C. Lacoursiere, A framework for problem standardization and algorithm comparison in multibody system, in: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, New York, USA, 2015.
[11] H. Parvaz, M.J. Nategh, Development of an efficient method of jamming prediction for designing locating systems in computer-aided fixture design, International Journal of Advanced Manufacturing Technology, 86(9-12) (2016) 2459-2471.
[12] H. Parvaz, M.J. Nategh, Development of locating system design module for freeform workpieces in computer-aided fixture design platform, Computer Aided Design, 104(1) (2018) 1-14.
[13] M.J. Nategh, H. Parvaz, Development of computer aided clamping system design for workpieces with freeform surfaces, Computer Aided Design, 95 (2018) 52-61.
[14] K. Zhang, J. Xu, Force control for a rigid dual peg-in-hole assembly, Assembly Automation, 37(2) (2017) 200-207.
[15] K. Zhang, J. Xu, H. Chen, J. Zhao, K. Chen, Jamming analysis and force control for flexible dual peg-in-hole assembly, IEEE Transactions on Industrial Elecetronics, 66(3) (2018) 1930-1939.
[16] Y. Huang, X. Zhang, X. Chen, J. Ota, Vision-guided peg-in-hole assembly by Baxter robot, Advances in Mechanical Engineering, 9(12) (2017) 1-9.
[17] Z. Hou, M. Philipp, K. Zhang, Y. Guan, K. Chen, J. Xu, The learning-based optimization algorithm for robotic dual peg-in-hole assembly, Assembly Automation, 38(4) (2018) 369-375.
[18] J. Giesbers, Contact Mechanics in ADMAS: A Technical evaluation of the contact models in multibody dynamics software MSC ADAMS, Bachelor thesis, University of Twente, Netherlands, 2012.
[19] S. Frimpong, M. Thiruvengadam, Contact and joint forces modeling and simulation of crawler-formation interactions, Journal of Powder Metallurgy & Mining, 4(2) (2015) 135-149.