[1] S. Khalili, R. Mittal, S.G. Kalibar, A study of the mechanical properties of steel/aluminium/GRP laminates, Materials Science and Engineering: A, 412(1-2) (2005) 137-140.
[2] A. Vlot, J.W. Gunnink, Fibre metal laminates: an introduction, Springer Science & Business Media, 2011.
[3] H. Nam, S. Jung, C. Jung, K. Han, A model of damage initiation in singly oriented ply fiber metal laminate under concentrated loads, Journal of composite materials, 37(3) (2003) 269-281.
[4] B. Geier, H.-R. Meyer-Piening, R. Zimmermann, On the influence of laminate stacking on buckling of composite cylindrical shells subjected to axial compression, Composite structures, 55(4) (2002) 467-474.
[5] T. Ng, K. Lam, J. Reddy, Dynamic stability of cylindrical panels with transverse shear effects, International Journal of solids and Structures, 36(23) (1999) 3483-3496.
[6] X. Li, Y. Chen, Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure, Journal of Sound and Vibration, 257(5) (2002) 967-976.
[7] K. Lam, C. Loy, Influence of boundary conditions for a thin laminated rotating cylindrical shell, Composite structures, 41(3-4) (1998) 215-228.
[8] Y.-S. Lee, K.-D. Lee, On the dynamic response of laminated circular cylindrical shells under impulse loads, Computers & structures, 63(1) (1997) 149-157.
[9] S. Matemilola, W. Stronge, Impact response of composite cylinders, International journal of solids and structures, 34(21) (1997) 2669-2684.
[10] I. Sheinman, S. Greif, Dynamic analysis of laminated shells of revolution, Journal of composite materials, 18(3) (1984) 200-215.
[11] S. Khalili, R. Azarafza, A. Davar, Transient dynamic response of initially stressed composite circular cylindrical shells under radial impulse load, Composite Structures, 89(2) (2009) 275-284.
[12] S.W. Gong, A study of impact on composite laminated shells, National University of Singapore, 1995.
[13] R.L. Riche, R.T. Haftka, Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm, AIAA journal, 31(5) (1993) 951-956.
[14] A. Smerdov, A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling II. Shells under external pressure, Composites science and technology, 60(11) (2000) 2067-2076.
[15] P. Weaver, Design of laminated composite cylindrical shells under axial compression, Composites Part B: Engineering, 31(8) (2000) 669-679.
[16] G. Duvaut, G. Terrel, F. Léné, V. Verijenko, Optimization of fiber reinforced composites, Composite Structures, 48(1-3) (2000) 83-89.
[17] H.-T. Hu, S.-C. Ou, Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations, Composite structures, 52(3-4) (2001) 265-275.
[18] J. Park, J. Hwang, C. Lee, W. Hwang, Stacking sequence design of composite laminates for maximum strength using genetic algorithms, Composite Structures, 52(2) (2001) 217-231.
[19] S. Adali, V. Verijenko, Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations, Composite structures, 54(2-3) (2001) 131-138.
[20] G. Soremekun, Z. Gürdal, C. Kassapoglou, D. Toni, Stacking sequence blending of multiple composite laminates using genetic algorithms, Composite structures, 56(1) (2002) 53-62.
[21] A. Jaszkiewicz, Genetic local search for multi-objective combinatorial optimization, European journal of operational research, 137(1) (2002) 50-71.
[22] R. Azarafza, S. Khalili, A. Jafari, A. Davar, Analysis and optimization of laminated composite circular cylindrical shell subjected to compressive axial and transverse transient dynamic loads, Thin-walled structures, 47(8-9) (2009) 970-983.
[23] M. Taskin, A. Arikoglu, O. Demir, Vibration and Damping Analysis of Sandwich Cylindrical Shells by the GDQM, AIAA Journal, (2019) 3040-3051.
[24] M.A. Rezvani, M. Esmaeili, M. Feizi, Discrete mass modeling for dynamic response of buildings in the vicinity of railway tracks due to train-induced ground vibrations, Scientia Iranica, 24(4) (2017) 1922-1939.
[25] A. Arikoglu, Multi-objective optimal design of hybrid viscoelastic/composite sandwich beams by using the generalized differential quadrature method and the non-dominated sorting genetic algorithm II, Structural and Multidisciplinary Optimization, 56(4) (2017) 885-901.
[26] F. Pang, H. Li, K. Choe, D. Shi, K. Kim, Free and forced vibration analysis of airtight cylindrical vessels with doubly curved shells of revolution by using Jacobi-Ritz method, Shock and Vibration, (2017) 1-20. https://doi.org/10.1155/2017/4538540.
[27] D. Nguyen Dinh, P.D. Nguyen, The dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations, Materials, 10(10) (2017) 1194.
[28] M. Talebitooti, M. Ghasemi, S. Hosseini, Vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 6(2) (2017) 103-114.
[29] J.R. Vinson, The behavior of shells composed of isotropic and composite materials, Springer Science & Business Media, 2013.
[30] A. Jafari, S. Khalili, R. Azarafza, Transient dynamic response of composite circular cylindrical shells under radial impulse load and axial compressive loads, Thin-Walled Structures, 43(11) (2005) 1763-1786.
[31] S. Tsai, Introduction to composite materials, Routledge, 2018.
[32] R. Olsson, Mass criterion for wave controlled impact response of composite plates, Composites Part A: Applied Science and Manufacturing, 31(8) (2000) 879-887.
[33] K. Shivakumar, W. Elber, W. Illg, Prediction of impact force and duration due to low-velocity impact on circular composite laminates, 23(3) (1985) 442-449.
[34] S.R. Swanson, Limits of quasi-static solutions in impact of composite structures, Composites Engineering, 2(4) (1992) 261-267.
[35] S. Abrate, Impact on composite structures, Cambridge university press, 2005.
[36] G.A. Soremekun, Genetic algorithms for composite laminate design and optimization, Virginia Tech, 1997.
[37] H. Altenbach, J. Altenbach, W. Kissing, Mechanics of composite structural elements, Springer, 2018.
[38] D.E. Hodgson, M.H. Wu, R.J. Biermann, ASM Handbook, Volume 2, Properties and Selection, Nonferrous Alloys and Special-Purpose Materials, in, ASM Handbook Committee (Materials Park: ASM International), 1990.