[1] O.M. Alifanov, Inverse heat transfer problems, Springer Science & Business Media, 2012.
[2] J.V. Beck, K.J. Arnold, Parameter estimation in engineering and science, James Beck, 1977.
[3] M.N. Ozisik, Inverse heat transfer: fundamentals and applications, Routledge, 2018.
[4] F. Bozzoli, A. Mocerino, S. Rainieri, P. Vocale, Inverse heat transfer modeling applied to the estimation of the apparent thermal conductivity of an intumescent fire retardant paint, Experimental Thermal and Fluid Science, 90 (2018) 143-152.
[5] C.-W. Chang, C.-H. Liu, C.-C. Wang, Review of computational schemes in inverse heat conduction problems, Smart Science, 6(1) (2018) 94-103.
[6] O. Fabela, S. Patil, S. Chintamani, B.H. Dennis, Estimation of effective thermal conductivity of porous Media utilizing inverse heat transfer analysis on cylindrical configuration, in: ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, 2017.
[7] M. Jahedi, F. Berntsson, J. Wren, B. Moshfegh, Transient inverse heat conduction problem of quenching a hollow cylinder by one row of water jets, International Journal of Heat and Mass Transfer, 117 (2018) 748-756.
[8] F. Kowsary, A. Behbahaninia, A. Pourshaghaghy, Transient heat flux function estimation utilizing the variable metric method, International communications in heat and mass transfer, 33(6) (2006) 800-810.
[9] T. Loulou, Combined parameter and function estimation with application to thermal conductivity and surface heat flux, Journal of Heat Transfer, 129(10) (2007) 1309-1320.
[10] M. Mohammadiun, Time-dependent heat flux estimation in multi-layer systems by inverse method, Journal of Thermophysics and Heat Transfer, (null) (2016) 599-607.
[11] H. Molavi, A. Hakkaki-Fard, R.K. Rahmani, A. Ayasoufi, M. Molavi, A novel methodology for combined parameter and function estimation problems, Journal of Heat Transfer, 132(12) (2010) 121301.
[12] C.-y. Yang, Estimation of boundary conditions in nonlinear inverse heat conduction problems, Journal of thermophysics and heat transfer, 17(3) (2003) 389-395.
[13] J. Zueco, F. Alhama, C.G. Fernandez, Numerical nonlinear inverse problem of determining wall heat flux, Heat and mass transfer, 41(5) (2005) 411-418.
[14] K. Dowding, J. Beck, A. Ulbrich, B. Blackwell, J. Hayes, Estimation of thermal properties and surface heat flux in carbon-carbon composite, Journal of Thermophysics and Heat Transfer, 9(2) (1995) 345-351.
[15] V. Petrushevsky, S. Cohen, Nonlinear inverse heat conduction with a moving boundary: heat flux and surface recession estimation, (1999).
[16] A.P. de Oliveira, H.R. Orlande, Estimation of the heat flux at the surface of ablating materials by using temperature and surface position measurements, Inverse Problems in Science and Engineering, 12(5) (2004) 563-577.
[17] A. Hakkaki-Fard, F. Kowsary, Heat flux estimation in a charring ablator, Numerical Heat Transfer, Part A: Applications, 53(5) (2007) 543-560.
[18] H.B. Khaniki, S.H. Karimian, Determining the heat flux absorbed by satellite surfaces with temperature data, Journal of Mechanical Science and Technology, 28(6) (2014) 2393-2398.
[19] H. Mohammadiun, H. Molavi, H.R.T. Bahrami, M. Mohammadiun, Real-Time Evaluation of Severe Heat Load Over Moving Interface of Decomposing Composites, Journal of Heat Transfer, 134(11) (2012) 111202.
[20] M. Mohammadiun, H. Molavi, H.R.T. Bahrami, H. Mohammadiun, Application of sequential function specification method in heat flux monitoring of receding solid surfaces, Heat Transfer Engineering, 35(10) (2014) 933-941.
[21] H. Molavi, A. Hakkaki-Fard, M. Molavi, R.K. Rahmani, A. Ayasoufi, S. Noori, Estimation of boundary conditions in the presence of unknown moving boundary caused by ablation, International Journal of Heat and Mass Transfer, 54(5-6) (2011) 1030-1038.
[22] H. Molavi, I. Pourshaban, A. Hakkaki-Fard, M. Mohlavi, Ablative Materials' Boundary Condition Simulation by Applying Inverse Approach and Euler Solver, Journal of Thermophysics and Heat Transfer, 26(1) (2012) 47-56.
[23] H. Molavi, R.K. Rahmani, A. Pourshaghaghy, E.S. Tashnizi, A. Hakkaki-Fard, Heat flux estimation in a nonlinear inverse heat conduction problem with moving boundary, Journal of Heat Transfer, 132(8) (2010) 081301.
[24] A. Plotkowski, M.J.M. Krane, The use of inverse heat conduction models for estimation of transient surface heat flux in electroslag remelting, Journal of Heat Transfer, 137(3) (2015) 031301.
[25] T.-S. Wu, H.-L. Lee, W.-J. Chang, Y.-C. Yang, An inverse hyperbolic heat conduction problem in estimating pulse heat flux with a dual-phase-lag model, International Communications in Heat and Mass Transfer, 60 (2015) 1-8.
[26] W.D. Henline, M.E. Tauber, Trajectory-based heating analysis for the European Space Agency/Rosetta Earth return vehicle, Journal of Spacecraft and Rockets, 31(3) (1994) 421-428.
[27] J.A. Fay, F.R. Riddell, Theory of stagnation point heat transfer in dissociated air, Journal of the Aerospace Sciences, 25(2) (1958) 73-85.
[28] M.E. Tauber, K. Sutton, Stagnation-point radiative heating relations for Earth and Mars entries, Journal of Spacecraft and Rockets, 28(1) (1991) 40-42.
[29] C.B. Moyer, R.A. Rindal, An analysis of the coupled chemically reacting boundary layer and charring ablator. part 2-finite difference solution for the in-depth response of charring materials considering surface chemical and energy balances, (1968).
[30] C.F. Hansen, Approximations for the thermodynamic and transport properties of high-temperature air, National Aeronautics and Space Administration, 1959.
[31] H. Molavi, I. Pourshaban, A. Hakkaki-Fard, M. Molavi, A. Ayasoufi, R.K. Rahmani, Inverse identification of thermal properties of charring ablators, Numerical Heat Transfer, Part B: Fundamentals, 56(6) (2010) 478-501.
[32] R. POTTS, Hybrid integral/quasi-steady solution of charring ablation, in: 5th Joint Thermophysics and Heat Transfer Conference, 1990, pp. 1677.
[33] S. Williams, D.M. Curry, Thermal protection materials: thermophysical property data, (1992).
[34] V. Tahmasbi, S. Noori, Thermal analysis of honeycomb sandwich panels as substrate of ablative heat shield, Journal of Thermophysics and Heat Transfer, 32(1) (2017) 129-140.