[1] M. Alizadeh, S. Rahmani, P. Tehrani, Calculating the aortic valve force and generated power by a specific cardiac assist device (AVICENA) in different counterpulsation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(6) (2018) 286.
[2] J. Garbade, H.B. Bittner, M.J. Barten, F.-W. Mohr, Current trends in implantable left ventricular assist devices, Cardiology research and practice, 2011 (2011).
[3] A.T. Tzallas, N.S. Katertsidis, E.C. Karvounis, M.G. Tsipouras, G. Rigas, Y. Goletsis, K. Zielinski, L. Fresiello, A. Di Molfetta, G. Ferrari, Modeling and simulation of speed selection on left ventricular assist devices, Computers in biology and medicine, 51 (2014) 128-139.
[4] K. Fraser, M. Taskin, T. Zhang, B. Griffith, Z. Wu, Comparison of shear stress, residence time and lagrangian estimates of hemolysis in different ventricular assist devices, in: 26th Southern Biomedical Engineering Conference SBEC 2010, April 30-May 2, 2010, College Park, Maryland, USA, Springer, 2010, pp. 548-551.
[5] C. Long, M. Esmaily-Moghadam, A. Marsden, Y. Bazilevs, Computation of residence time in the simulation of pulsatile ventricular assist devices, Computational Mechanics, 54(4) (2014) 911-919.
[6] S. Rahmani, M. Navidbakhsh, M. Alizadeh, Investigation of a new prototype of multi-balloons LVAD using FSI, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(1) (2018) 8.
[7] J.N. Kirkpatrick, G. Wieselthaler, M. Strueber, M.G.S.J. Sutton, J.E. Rame, Ventricular assist devices for treatment of acute heart failure and chronic heart failure, Heart, 101(14) (2015) 1091-1096.
[8] C.A. Thunberg, B.D. Gaitan, F.A. Arabia, D.J. Cole, A.M. Grigore, Ventricular assist devices today and tomorrow, Journal of cardiothoracic and vascular anesthesia, 24(4) (2010) 656-680.
[9] K.G. Soucy, G.A. Giridharan, Y. Choi, M.A. Sobieski, G. Monreal, A. Cheng, E. Schumer, M.S. Slaughter, S.C. Koenig, Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure, The Journal of Heart and Lung Transplantation, 34(1) (2015) 122-131.
[10] L. Xu, M. Yang, L. Ye, Z. Dong, Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD, Technology and Health Care, 23(s2) (2015) S443-S451.
[11] B. Cremers, A. Link, C. Werner, H. Gorhan, I. Simundic, G. Matheis, B. Scheller, M. Böhm, U. Laufs, Pulsatile venoarterial perfusion using a novel synchronized cardiac assist device augments coronary artery blood flow during ventricular fibrillation, Artificial organs, 39(1) (2015) 77-82.
[12] J. Di Paolo, J.F. Insfrán, E.R. Fries, D.M. Campana, M.E. Berli, S. Ubal, A preliminary simulation for the development of an implantable pulsatile blood pump, Advances in biomechanics and applications, 1(2) (2014) 127-141.
[13] M. Behbahani, M. Behr, M. Hormes, U. Steinseifer, D. Arora, O. Coronado, M. Pasquali, A review of computational fluid dynamics analysis of blood pumps, European Journal of Applied Mathematics, 20(4) (2009) 363-397.
[14] A. Schenkel, M. Deville, M. Sawley, P. Hagmann, J.-D. Rochat, Flow simulation and hemolysis modeling for a blood centrifuge device, Computers & Fluids, 86 (2013) 185-198.
[15] E. Okamoto, T. Hashimoto, T. Inoue, Y. Mitamura, Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer‐aided design and manufacturing technology, Artificial organs, 27(1) (2003) 61-67.
[16] M. Giersiepen, L. Wurzinger, R. Opitz, H. Reul, Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves, The International journal of artificial organs, 13(5) (1990) 300-306.
[17] K.H. Fraser, M.E. Taskin, B.P. Griffith, Z.J. Wu, The use of computational fluid dynamics in the development of ventricular assist devices, Medical engineering & physics, 33(3) (2011) 263-280.
[18] O. Myagmar, S.W. Day, The evaluation of blood damage in a left ventricular assist device, Journal of Medical Devices, 9(2) (2015) 020914.
[19] H. Yu, S. Engel, G. Janiga, D. Thévenin, A review of hemolysis prediction models for computational fluid dynamics, Artificial organs, 41(7) (2017) 603-621.
[20] M.E. Taskin, K.H. Fraser, T. Zhang, B. Gellman, A. Fleischli, K.A. Dasse, B.P. Griffith, Z.J. Wu, Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support, Artificial organs, 34(12) (2010) 1099-1113.
[21] G. Heuser, R. Opitz, A Couette viscometer for short time shearing of blood, Biorheology, 17(1-2) (1980) 17-24.
[22] C. Multiphysics, Comsol multiphysics user guide (version 4.3 a), COMSOL, AB, (2012) 39-40.