[1] S.E. Haghighi, K. Janghorban, S. Izadi, Structural evolution of Fe–50 at.% Al powders during mechanical alloying and subsequent annealing processes, Journal of Alloys and Compounds, 495(1) (2010) 260-264.
[2] G.W. Meetham, M.H.V.d. Voorde, Materials for High Temperature Engineering Applications, Springer, Berline, (2000).
[3] M. Zamanzade, A. Barnoush, C. Motz, A Review on the Properties of Iron Aluminide Intermetallics, Crystals 2016, 6(10) (2016).
[4] S.C. Deevi, V.K. Sikka, Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics, 4(5) (1996) 357-375.
[5] S.C. Deevi, V.K. Sikka, C.T. Liu, Processing, properties, and applications of nickel and iron aluminides, Progress in Materials Science, 42(1) (1997) 177-192.
[6] P. Novák, A. Michalcová, I. Marek, M. Mudrová, K. Saksl, J. Bednarčík, P. Zikmund, D. Vojtěch, On the formation of intermetallics in Fe–Al system – An in situ XRD study, Intermetallics, 32(0) (2013) 127-136.
[7] P. Novak, A. Michalcova, I. Marek, M. Murova, J. Bednarcik, K. Saksl, Formation of intermetallics during reactive sintering production of Fe-Al alloys Metal 5(2012) 23 - 25.
[8] M. Chojnacki, S. Jóźwiak, K. Karczewski, Z. Bojar, Modification of Fe and Al elemental powders’ sintering with addition of magnesium and magnesium hydride, Intermetallics, 19(10) (2011) 1555-1562.
[9] H. Gao, Y. He, P. Shen, J. Zou, N. Xu, Y. Jiang, B. Huang, C.T. Liu, Porous FeAl intermetallics fabricated by elemental powder reactive synthesis, Intermetallics, 17(12) (2009) 1041-1046.
[10] S. Gedevanishvili, S.C. Deevi, Processing of iron aluminides by pressureless sintering through Fe+Al elemental route, Materials Science and Engineering: A, 325(1–2) (2002) 163-176.
[11] H. Sina, J. Corneliusson, K. Turba, S. Iyengar, A study on the formation of iron aluminide (FeAl) from elemental powders Journal of Alloys and Compounds, 636 (2015) 261-269.
[12] S. Jóźwiak, K. Karczewski, Z. Bojar, Kinetics of reactions in FeAl synthesis studied by the DTA technique and JMA model, Intermetallics, 18(7) (2010) 1332-1337.
[13] E. Pocheć, S. Jóźwiak, K. Karczewski, Z. Bojar, Fe-Al phase formation around SHS reactions under isothermal conditions, Journal of Alloys and Compounds, 509(4) (2011) 1124-1128.
[14] E. Pochec, S. Jozwiak, K. Karczewski, Z. Bojar, Maps of Fe-Al phases formation kinetics parameters during isothermal sintering, Thermochimica Acta, 545 (2012) 14-19.
[15] Nikolay A. Belov, Dmitry G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier, (2005).
[16] A. Mohsenifar, M.R. Aboutalebi, S. Seyedein, Effect of high temperature oxidation on the corrosion behavior of aluminized low carbon steel in molten aluminum, (2015).
[17] R. Khoshhal, A. Hosseinzadeh, Investigation of the mechanism of Fe2Al5 powder into FeAl powder transformation, Metal Powder Report, 74(1) (2019) 25-29.
[18] M.A. Morris-Muñoz, A. Dodge, D.G. Morris, Structure, strength and toughness of nanocrystalline FeAl, Nanostructured Materials, 11(7) (1999) 873-885.
[19] R.W. Richards, R.D. Jones, P.D. Clements, H. Clarke, Metallurgy of continuous hot dip aluminizing, International Materials Reviews, 39(5) (1994) 191-212.
[20] B.M. Mutasa, Defect Structures in Ordered Intermetallics; Grain Boundaries and Surfaces in FeAl, NiAl, CoAl and TiAl, The faculty of the Virginia Polytechnic Institute (1997).