Intelligent Control of Biped Robots: Optimal Fuzzy Tracking Control via Multi- Objective Particle Swarm Optimization and Genetic Algorithms

Document Type : Research Article


1 Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran.

2 Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.


This paper is concerned with fuzzy tracking control optimized via multi-objective particle swarm optimization for stable walking of biped robots. To present an optimal control approach, multi-objective particle swarm optimization is used to design the parameters of the control method     in comparison to three effectual multi-objective optimization algorithms in the literature. In particle swarm optimization, a dynamic elimination technique is utilized as a novel approach to prune the archive effectively. Moreover, a turbulence operator is used to skip the local optima and the personal best position of each particle is determined by making use of the Sigma method. Normalized summation of angles errors and normalized summation of control efforts are two conflicting objective functions addressed by dint of multi-objective optimization algorithms in the present investigation. By contrasting the Pareto front of multi-objective particle swarm optimization with the Pareto fronts of other methods, it is illustrated that multi-objective particle swarm optimization performs with high accuracy, convergence and diversity of solutions in the design of fuzzy tracking control for nonlinear dynamics of biped robots. Finally,  the proper performance of the proposed controller is demonstrated by the results presenting   an appropriate tracking system and optimal control inputs. Indeed, the appropriate tracking system   and optimal control inputs prove the efficiency of optimal fuzzy tracking control in dealing with the nonlinear dynamics of biped robots.


Main Subjects

[1] M. Daneshyari, G.G.J.I.T.o.S. Yen, Man,, C.-P.A. Systems, Humans, Constrained multiple-swarm particle swarm optimization within a cultural framework, 42(2) (2011) 475-490.
[2]  F. Yang, R. Yuan, J. Yi, G. Fan, X.J.S.c. Tan, Direct adaptive type-2 fuzzy neural network control for a generic hypersonic flight vehicle, 17(11) (2013) 2053- 2064.
[3]  W. Zhang, X. Ye, L. Jiang, Y. Zhu, X. Ji, X.J.A.S. Hu, Technology, Output feedback control for free-floating space robotic manipulators base on adaptive fuzzy neural network, 29(1) (2013) 135-143.
[4]  H.-J. Rong, S. Han, G.-S.J.A.S.C. Zhao, Adaptive fuzzy control of aircraft wing-rock motion, 14 (2014) 181-193.
[5]  Y. Li, S. Tong, T.J.N.A.R.W.A. Li, Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping, 14(1) (2013) 483-494.
[6] C.Z. Resende, R. Carelli, M.J.C.E.P. Sarcinelli-Filho, A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains, 21(10) (2013) 1302-1309.
[7]  H.R. Hassanzadeh, M.-R. Akbarzadeh-T, A. Akbarzadeh, A.J.F.s. Rezaei, systems, An interval-valued fuzzy controller for complex dynamical systems with application to a 3-PSP parallel robot, 235 (2014) 83-100.
[8]  R. Guclu, M.J.J.o.V. Metin, Control, Fuzzy logic control of vibrations of a light rail transport vehicle in use in Istanbul traffic, 15(9) (2009) 1423-1440.
[9]    S. Sezer, A.E.J.J.o.V. Atalay, Control, Application of fuzzy logic based control algorithms on a railway vehicle considering random track irregularities, 18(8) (2012) 1177-1198.
[10]  E. Onieva, J. Godoy, J. Villagra, V. Milanés, J.J.E.S.w.A. Pérez, On-line learning of a fuzzy controller for a precise vehicle cruise control system, 40(4) (2013) 1046-1053.
[11]   A.G. Aissaoui, A. Tahour, N. Essounbouli, F. Nollet, M. Abid, M.I.J.E.c. Chergui, management, A Fuzzy-PI control to extract an optimal power from wind turbine, 65 (2013) 688-696.
[12]  A. Hossain, R. Singh, I.A. Choudhury, A.J.P.E. Bakar, Energy efficient wind turbine system based on fuzzy control approach, 56 (2013) 637-642.
[13]  X. Liu, X.J.J.o.P.C. Kong, Nonlinear fuzzy model predictive iterative learning control for drum-type boiler–turbine system, 23(8) (2013) 1023-1040.
[14]  H. Li, X. Liao, X.J.J.o.V. Lei, Control, Two fuzzy control schemes for Lorenz-Stenflo chaotic system, 18(11) (2012) 1675-1682.
[15]  K. Yeh, C.-W. Chen, D. Lo, K.F.J.J.o.V. Liu, Control, RETRACTED: Neural-network fuzzy control for chaotic tuned mass damper systems with time delays, 18(6) (2012) 785-795.
[16]  C.-W.J.J.o.V. Chen, Control, RETRACTED: Fuzzy control of interconnected structural systems using the fuzzy Lyapunov method, 17(11) (2011) 1693-1702.
[17] Y. Li, S. Tong, T. Li, X.J.F.S. Jing, Systems, Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach 235 (2014) 1-24.
[18]     L. Wang, R. Yang, P.M. Pardalos, L. Qian, M.J.I.J.o.E.P. Fei, E. Systems, An adaptive fuzzy  controller  based on harmony search and its application to power plant control, 53 (2013) 272-278.
[19]      T.-H.S. Li, Y.-T. Su, S.-W. Lai, J.-J.J.I.T.o.S. Hu, Man,,P.B. Cybernetics, Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic, 41(3) (2010) 736-748.
[20]     T.-H.S. Li, Y.-T. Su, S.-H. Liu, J.-J. Hu, C.-C.J.I.T.o.I.E. Chen, Dynamic balance control for biped robot walking using sensor fusion, Kalman filter, and fuzzy logic, 59(11) (2011) 4394-4408.
[21]  Y. Hu, G. Yan, Z.J.I.T.o.R. Lin, Feedback control of planar biped robot with regulable step length and walking speed, 27(1) (2010) 162-169.
[22]  Z. Li, S.S.J.I.C.T. Ge, Applications, Adaptive robust controls of biped robots, 7(2) (2013) 161-175.
[23]  C. Liu, D. Wang, Q.J.I.T.o.S. Chen, Man,, C. Systems, Central pattern generator inspired control for adaptive walking of biped robots, 43(5) (2013) 1206-1215.
[24]  X. Wu, Y. Wang, X.J.F.S. Dang, Systems, Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network, 235 (2014) 62-82.
[25]  L. Wang, Z. Liu, C.P. Chen, Y. Zhang, S. Lee, X.J.E.A.o.A.I. Chen, Fuzzy SVM learning control system considering time properties of biped walking samples, 26(2) (2013) 757-765.
[26]  M. Han, J. Fan, J.J.I.T.o.N.N. Wang, A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control, 22(9) (2011) 1457-1468.
[27]  J. Wu, J. Shen, M. Krug, S.K. Nguang, Y.J.J.o.C.T. Li, applications, GA-based nonlinear predictive switching control for a boiler-turbine system, 10(1) (2012) 100- 106.
[28]  C.-D. Wang, C.J.N.E. Lin, Design, Automatic boiling water reactor control rod pattern design using particle swarm optimization algorithm and local search, 255 (2013) 273-279.
[29]  M.G. Nisha, G.J.J.o.c.t. Pillai, applications, Nonlinear model predictive control with relevance vector regression and particle swarm optimization, 11(4) (2013) 563-569.
[30]  O. Yakut, H.J.J.o.V. Alli, Control, Neural based sliding- mode control with moving sliding surface for the seismic isolation of structures, 17(14) (2011) 2103-2116.
[31]  Y. Xu, F. Jia, C. Ma, J. Mao, S.J.I.J.o.M.S. Zhang, Technology, Chatter free sliding mode control of a chaotic coal mine power grid with small energy inputs, 22(4) (2012) 477-481.
[32]  M. Bensaada, A.B.J.I.J.o.E.P. Stambouli, E.  Systems, A practical design sliding mode controller for DC–DC converter based on control parameters optimization using assigned poles associate to genetic algorithm, 53 (2013) 761-773.
[33]  S. Kaitwanidvilai, P.J.M. Olranthichachat, Robust loop shaping–fuzzy gain scheduling control of a servo- pneumatic system using particle swarm optimization approach, 21(1) (2011) 11-21.
[34]  C.-M. Lin, M.-C. Li, A.-B. Ting, M.-H.J.I.J.o.M.L. Lin, Cybernetics, A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm, 2(4) (2011) 225-234.
[35]  K.-C. Ying, S.-W. Lin,  Z.-J.  Lee,  I.-L.J.A.S.C.  Lee, A novel function approximation  based  on  robust fuzzy regression algorithm model and particle swarm optimization, 11(2) (2011) 1820-1826.
[36]  N.V. George, G.J.E.S.w.A. Panda, A robust evolutionary feedforward active noise control system using Wilcoxon norm and particle swarm optimization algorithm, 39(8) (2012) 7574-7580.
[37]  N. Khaehintung, A. Kunakorn, P.J.I.J.o.C. Sirisuk, Automation, Systems, A novel fuzzy logic control technique tuned by particle swarm optimization for maximum power point tracking for a photovoltaic system using a current-mode boost converter with bifurcation control, 8(2) (2010) 289-300.
[38]  M. Marinaki, Y. Marinakis, G.E.J.S. Stavroulakis, M. Optimization, Fuzzy control optimized by a multi- objective particle swarm optimization algorithm for vibration suppression of smart structures, 43(1) (2011) 29-42.
[39]  M. Huang, H. Lin, H. Yunkai, P. Jin, Y.J.I.T.o.M. Guo, Fuzzy control for flux weakening of hybrid exciting synchronous motor based on particle swarm optimization algorithm, 48(11) (2012) 2989-2992.
[40]  J. Xu, X. Zhao, D.J.I.I.T.S. Srinivasan, On optimal freeway local ramp metering using fuzzy logic control with particle swarm optimisation, 7(1) (2013) 95-104.
[41]  M.R. Soltanpour, M.H.J.N.D. Khooban, A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator, 74(1-2) (2013) 467-478.
[42]  D.M. Wonohadidjojo, G. Kothapalli, M.Y.J.I.J.o.A. Hassan, Computing, Position control of electro- hydraulic actuator system using fuzzy logic controller optimized by particle swarm optimization, 10(3) (2013) 181-193.
[43]  T. Niknam, M.H. Khooban, A. Kavousifard, M.R.J.N.D. Soltanpour, An optimal type II fuzzy sliding mode control design for a class of nonlinear systems, 75(1-2) (2014) 73-83.
[44]  M.J.A.i.E.S. Schacher, Optimal feedback control of robots in the case of random initial conditions, 46(1) (2012) 19-26.
[45]  H.-L. Bui, D.-T. Tran, N.-L.J.J.o.v. Vu, control, Optimal fuzzy control of an inverted pendulum, 18(14) (2012) 2097-2110.
[46]  D.E. Chaouch, Z. Ahmed-Foitih, M.F.J.J.o.V. Khelfi, Control, A self-tuning fuzzy inference sliding mode control scheme for a class of nonlinear systems, 18(10) (2012) 1494-1505.
[47] M.J. Mahmoodabadi, M. Taherkhorsandi, A.J.N. Bagheri, Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO, 124 (2014) 194-209.
[48]  M.J. Mahmoodabadi, S.A. Mostaghim, A. Bagheri, N.J.M. Nariman-Zadeh, C. Modelling, Pareto optimal design of the decoupled sliding mode controller for an inverted pendulum system and its stability simulation via Java programming, 57(5-6) (2013) 1070-1082.
[49] L.-X. Wang, L.-X. Wang, A course in fuzzy systems and control, Prentice Hall PTR Upper Saddle River, NJ, 1997.
[50] L.A. Zadeh, R.A. Aliev, Fuzzy Logic Theory and Applications: Part I and Part II, World Scientific Publishing, 2018.
[51]  S.-J. Tsai, T.-Y. Sun, C.-C. Liu, S.-T. Hsieh, W.-C. Wu, S.-Y.J.E.S.w.A. Chiu, An improved multi-objective particle swarm optimizer for multi-objective problems, 37(8) (2010) 5872-5886.
[52]  S. Mostaghim, J. Teich, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), IEEE, 2003, pp. 26-33.
[53]   Y. Wang, Y.J.I.S. Yang, Particle swarm optimization with preference order ranking for multi-objective optimization, 179(12) (2009) 1944-1959.
[54] A.G. Hernández-Díaz, L.V. Santana-Quintero, C.A.C. Coello, J. Molina, R.J.I.S. Caballero, Improving the efficiency of ϵ-dominance based grids, 181(15) (2011) 3101-3129.
[55]  K. Atashkari, N. Nariman-Zadeh, M. Gölcü, A. Khalkhali, A.J.E.C. Jamali, Management, Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms, 48(3) (2007) 1029-1041.