[1] M. Daneshyari, G.G.J.I.T.o.S. Yen, Man,, C.-P.A. Systems, Humans, Constrained multiple-swarm particle swarm optimization within a cultural framework, 42(2) (2011) 475-490.
[2] F. Yang, R. Yuan, J. Yi, G. Fan, X.J.S.c. Tan, Direct adaptive type-2 fuzzy neural network control for a generic hypersonic flight vehicle, 17(11) (2013) 2053- 2064.
[3] W. Zhang, X. Ye, L. Jiang, Y. Zhu, X. Ji, X.J.A.S. Hu, Technology, Output feedback control for free-floating space robotic manipulators base on adaptive fuzzy neural network, 29(1) (2013) 135-143.
[4] H.-J. Rong, S. Han, G.-S.J.A.S.C. Zhao, Adaptive fuzzy control of aircraft wing-rock motion, 14 (2014) 181-193.
[5] Y. Li, S. Tong, T.J.N.A.R.W.A. Li, Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping, 14(1) (2013) 483-494.
[6] C.Z. Resende, R. Carelli, M.J.C.E.P. Sarcinelli-Filho, A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains, 21(10) (2013) 1302-1309.
[7] H.R. Hassanzadeh, M.-R. Akbarzadeh-T, A. Akbarzadeh, A.J.F.s. Rezaei, systems, An interval-valued fuzzy controller for complex dynamical systems with application to a 3-PSP parallel robot, 235 (2014) 83-100.
[8] R. Guclu, M.J.J.o.V. Metin, Control, Fuzzy logic control of vibrations of a light rail transport vehicle in use in Istanbul traffic, 15(9) (2009) 1423-1440.
[9] S. Sezer, A.E.J.J.o.V. Atalay, Control, Application of fuzzy logic based control algorithms on a railway vehicle considering random track irregularities, 18(8) (2012) 1177-1198.
[10] E. Onieva, J. Godoy, J. Villagra, V. Milanés, J.J.E.S.w.A. Pérez, On-line learning of a fuzzy controller for a precise vehicle cruise control system, 40(4) (2013) 1046-1053.
[11] A.G. Aissaoui, A. Tahour, N. Essounbouli, F. Nollet, M. Abid, M.I.J.E.c. Chergui, management, A Fuzzy-PI control to extract an optimal power from wind turbine, 65 (2013) 688-696.
[12] A. Hossain, R. Singh, I.A. Choudhury, A.J.P.E. Bakar, Energy efficient wind turbine system based on fuzzy control approach, 56 (2013) 637-642.
[13] X. Liu, X.J.J.o.P.C. Kong, Nonlinear fuzzy model predictive iterative learning control for drum-type boiler–turbine system, 23(8) (2013) 1023-1040.
[14] H. Li, X. Liao, X.J.J.o.V. Lei, Control, Two fuzzy control schemes for Lorenz-Stenflo chaotic system, 18(11) (2012) 1675-1682.
[15] K. Yeh, C.-W. Chen, D. Lo, K.F.J.J.o.V. Liu, Control, RETRACTED: Neural-network fuzzy control for chaotic tuned mass damper systems with time delays, 18(6) (2012) 785-795.
[16] C.-W.J.J.o.V. Chen, Control, RETRACTED: Fuzzy control of interconnected structural systems using the fuzzy Lyapunov method, 17(11) (2011) 1693-1702.
[17] Y. Li, S. Tong, T. Li, X.J.F.S. Jing, Systems, Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach 235 (2014) 1-24.
[18] L. Wang, R. Yang, P.M. Pardalos, L. Qian, M.J.I.J.o.E.P. Fei, E. Systems, An adaptive fuzzy controller based on harmony search and its application to power plant control, 53 (2013) 272-278.
[19] T.-H.S. Li, Y.-T. Su, S.-W. Lai, J.-J.J.I.T.o.S. Hu, Man,,P.B. Cybernetics, Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic, 41(3) (2010) 736-748.
[20] T.-H.S. Li, Y.-T. Su, S.-H. Liu, J.-J. Hu, C.-C.J.I.T.o.I.E. Chen, Dynamic balance control for biped robot walking using sensor fusion, Kalman filter, and fuzzy logic, 59(11) (2011) 4394-4408.
[21] Y. Hu, G. Yan, Z.J.I.T.o.R. Lin, Feedback control of planar biped robot with regulable step length and walking speed, 27(1) (2010) 162-169.
[22] Z. Li, S.S.J.I.C.T. Ge, Applications, Adaptive robust controls of biped robots, 7(2) (2013) 161-175.
[23] C. Liu, D. Wang, Q.J.I.T.o.S. Chen, Man,, C. Systems, Central pattern generator inspired control for adaptive walking of biped robots, 43(5) (2013) 1206-1215.
[24] X. Wu, Y. Wang, X.J.F.S. Dang, Systems, Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network, 235 (2014) 62-82.
[25] L. Wang, Z. Liu, C.P. Chen, Y. Zhang, S. Lee, X.J.E.A.o.A.I. Chen, Fuzzy SVM learning control system considering time properties of biped walking samples, 26(2) (2013) 757-765.
[26] M. Han, J. Fan, J.J.I.T.o.N.N. Wang, A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control, 22(9) (2011) 1457-1468.
[27] J. Wu, J. Shen, M. Krug, S.K. Nguang, Y.J.J.o.C.T. Li, applications, GA-based nonlinear predictive switching control for a boiler-turbine system, 10(1) (2012) 100- 106.
[28] C.-D. Wang, C.J.N.E. Lin, Design, Automatic boiling water reactor control rod pattern design using particle swarm optimization algorithm and local search, 255 (2013) 273-279.
[29] M.G. Nisha, G.J.J.o.c.t. Pillai, applications, Nonlinear model predictive control with relevance vector regression and particle swarm optimization, 11(4) (2013) 563-569.
[30] O. Yakut, H.J.J.o.V. Alli, Control, Neural based sliding- mode control with moving sliding surface for the seismic isolation of structures, 17(14) (2011) 2103-2116.
[31] Y. Xu, F. Jia, C. Ma, J. Mao, S.J.I.J.o.M.S. Zhang, Technology, Chatter free sliding mode control of a chaotic coal mine power grid with small energy inputs, 22(4) (2012) 477-481.
[32] M. Bensaada, A.B.J.I.J.o.E.P. Stambouli, E. Systems, A practical design sliding mode controller for DC–DC converter based on control parameters optimization using assigned poles associate to genetic algorithm, 53 (2013) 761-773.
[33] S. Kaitwanidvilai, P.J.M. Olranthichachat, Robust loop shaping–fuzzy gain scheduling control of a servo- pneumatic system using particle swarm optimization approach, 21(1) (2011) 11-21.
[34] C.-M. Lin, M.-C. Li, A.-B. Ting, M.-H.J.I.J.o.M.L. Lin, Cybernetics, A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm, 2(4) (2011) 225-234.
[35] K.-C. Ying, S.-W. Lin, Z.-J. Lee, I.-L.J.A.S.C. Lee, A novel function approximation based on robust fuzzy regression algorithm model and particle swarm optimization, 11(2) (2011) 1820-1826.
[36] N.V. George, G.J.E.S.w.A. Panda, A robust evolutionary feedforward active noise control system using Wilcoxon norm and particle swarm optimization algorithm, 39(8) (2012) 7574-7580.
[37] N. Khaehintung, A. Kunakorn, P.J.I.J.o.C. Sirisuk, Automation, Systems, A novel fuzzy logic control technique tuned by particle swarm optimization for maximum power point tracking for a photovoltaic system using a current-mode boost converter with bifurcation control, 8(2) (2010) 289-300.
[38] M. Marinaki, Y. Marinakis, G.E.J.S. Stavroulakis, M. Optimization, Fuzzy control optimized by a multi- objective particle swarm optimization algorithm for vibration suppression of smart structures, 43(1) (2011) 29-42.
[39] M. Huang, H. Lin, H. Yunkai, P. Jin, Y.J.I.T.o.M. Guo, Fuzzy control for flux weakening of hybrid exciting synchronous motor based on particle swarm optimization algorithm, 48(11) (2012) 2989-2992.
[40] J. Xu, X. Zhao, D.J.I.I.T.S. Srinivasan, On optimal freeway local ramp metering using fuzzy logic control with particle swarm optimisation, 7(1) (2013) 95-104.
[41] M.R. Soltanpour, M.H.J.N.D. Khooban, A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator, 74(1-2) (2013) 467-478.
[42] D.M. Wonohadidjojo, G. Kothapalli, M.Y.J.I.J.o.A. Hassan, Computing, Position control of electro- hydraulic actuator system using fuzzy logic controller optimized by particle swarm optimization, 10(3) (2013) 181-193.
[43] T. Niknam, M.H. Khooban, A. Kavousifard, M.R.J.N.D. Soltanpour, An optimal type II fuzzy sliding mode control design for a class of nonlinear systems, 75(1-2) (2014) 73-83.
[44] M.J.A.i.E.S. Schacher, Optimal feedback control of robots in the case of random initial conditions, 46(1) (2012) 19-26.
[45] H.-L. Bui, D.-T. Tran, N.-L.J.J.o.v. Vu, control, Optimal fuzzy control of an inverted pendulum, 18(14) (2012) 2097-2110.
[46] D.E. Chaouch, Z. Ahmed-Foitih, M.F.J.J.o.V. Khelfi, Control, A self-tuning fuzzy inference sliding mode control scheme for a class of nonlinear systems, 18(10) (2012) 1494-1505.
[47] M.J. Mahmoodabadi, M. Taherkhorsandi, A.J.N. Bagheri, Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO, 124 (2014) 194-209.
[48] M.J. Mahmoodabadi, S.A. Mostaghim, A. Bagheri, N.J.M. Nariman-Zadeh, C. Modelling, Pareto optimal design of the decoupled sliding mode controller for an inverted pendulum system and its stability simulation via Java programming, 57(5-6) (2013) 1070-1082.
[49] L.-X. Wang, L.-X. Wang, A course in fuzzy systems and control, Prentice Hall PTR Upper Saddle River, NJ, 1997.
[50] L.A. Zadeh, R.A. Aliev, Fuzzy Logic Theory and Applications: Part I and Part II, World Scientific Publishing, 2018.
[51] S.-J. Tsai, T.-Y. Sun, C.-C. Liu, S.-T. Hsieh, W.-C. Wu, S.-Y.J.E.S.w.A. Chiu, An improved multi-objective particle swarm optimizer for multi-objective problems, 37(8) (2010) 5872-5886.
[52] S. Mostaghim, J. Teich, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), IEEE, 2003, pp. 26-33.
[53] Y. Wang, Y.J.I.S. Yang, Particle swarm optimization with preference order ranking for multi-objective optimization, 179(12) (2009) 1944-1959.
[54] A.G. Hernández-Díaz, L.V. Santana-Quintero, C.A.C. Coello, J. Molina, R.J.I.S. Caballero, Improving the efficiency of ϵ-dominance based grids, 181(15) (2011) 3101-3129.
[55] K. Atashkari, N. Nariman-Zadeh, M. Gölcü, A. Khalkhali, A.J.E.C. Jamali, Management, Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms, 48(3) (2007) 1029-1041.