[1] Z. Aftab, T. Robert, P.-B. Wieber, Balance recovery prediction with multiple strategies for standing humans, PloS one, 11(3) (2016) 1-16.
[2] M.J.H. Heijnen, S. Rietdyk, Falls in young adults: Perceived causes and environmental factors assessed with a daily online survey, Human Movement Science, 46 (2016) 86-95.
[3] J. Zhang, X. Han, X. Han, Walking quality guaranteed central pattern generator control method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(3) (2014) 569- 579.
[4] Z. Potocanac, J. de Bruin, S. van der Veen, S. Verschueren, J. van Dieën, J. Duysens, M. Pijnappels, Fast online corrections of tripping responses, Experimental brain research, 232(11) (2014) 3579-3590.
[5] T.Y. Wang, T. Bhatt, F. Yang, Y.C. Pai, Adaptive control reduces trip-induced forward gait instability among young adults, Journal of biomechanics, 45(7) (2012) 1169-1175.
[6] M. Pijnappels, M.F. Bobbert, J.H. van Dieën, EMG modulation in anticipation of a possible trip during walking in young and older adults, Journal of Electromyography and Kinesiology, 16(2) (2006) 137-143.
[7] A.F. Cordero, H. Koopman, F.C. van der Helm, Mechanical model of the recovery from stumbling, Biological Cybernetics, 91(4) (2004) 212-220.
[8] A.F. Cordero, M. Ackermann, M. de Lima Freitas, A method to simulate motor control strategies to recover from perturbations: application to a stumble recovery during gait, in: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, IEEE, 2011, pp. 7829-7832.
[9] J.J. Eng, D.A. Winter, A.E. Patla, Strategies for recovery from a trip in early and late swing during human walking, Experimental Brain Research, 102(2) (1994) 339-349.
[10] A. Murai, K. Yamane, A neuromuscular locomotion controller that realizes human-like responses to unexpected disturbances, in: Robotics and Automation (ICRA), 2011 IEEE International Conference on, IEEE, 2011, pp. 1997-2002.
[11] P. Roos, P. McGuigan, G. Trewartha, Trip recovery strategy selection in younger and older adults and the associated physical demands, in: 33rd Annual American Society of Biomechanics (ASB) Meeting, State College, PA, USA, 2009.
[12] Z. Potocanac, M. Pijnappels, S. Verschueren, J. van Dieën, J. Duysens, Two-stage muscle activity responses in decisions about leg movement adjustments during trip recovery, Journal of neurophysiology, 115(1) (2016) 143-156.
[13] O. Kwon, J.H. Park, Reflex control of bipedal locomotion on a slippery surface, Advanced Robotics, 16(8) (2002) 721-734.
[14] B. Miripour Fard, M. Mosadeghzad, Manipulability Based Hierarchical Control of Perturbed Walking, International Journal of Control, Automation and Systems, (2019) 1-11.
[15] M. Mahmoodi, M.K. Manesh, M. Eghtesad, M. Farid, S. Movahed, Adaptive passivity-based control of a flexible-joint robot manipulator subject to collision, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(5) (2015) 840-849.
[16] S. Gupta, A. Kumar, A brief review of dynamics and control of underactuated biped robots, Advanced Robotics, (2017) 1-17.
[17] G.N. Boone, J.K. Hodgins, Slipping and tripping reflexes for bipedal robots, Autonomous robots, 4(3) (1997) 259-271.
[18] H.-W. Park, A. Ramezani, J. Grizzle, A finite-state machine for accommodating unexpected large ground- height variations in bipedal robot walking, IEEE Transactions on Robotics, 29(2) (2013) 331-345.
[19] T. de Boer, M. Wisse, F. Van der Helm, Mechanical analysis of the preferred strategy selection in human stumble recovery, Journal of biomechanical engineering, 132(7) (2010) 071012.
[20] T. Buschmann, A. Ewald, A. von Twickel, A. Büschges, Controlling legs for locomotion—Insights from robotics and neurobiology, Bioinspiration & biomimetics, 10(4) (2015) 041001.
[21] L. Martin, V. Cahouët, M. Ferry, F. Fouque, Optimization model predictions for postural coordination modes, Journal of biomechanics, 39(1) (2006) 170-176.
[22] D. Naderi, M. Sadeghi-Mehr, B.M. Fard, Optimization- based dynamic prediction of human postural response under tilting of base of support, International Journal of Humanoid Robotics, 9(02) (2012) 1250011.
[23] D. Naderi, B. Miripour Fard, M. Sadeghi-Mehr, Optimal prediction of human postural response under anterior– posterior platform tilting, Communications in Nonlinear Science and Numerical Simulation, 18(1) (2013) 99-108.
[24] K. An, C. Li, Z. Fang, C. Liu, Efficient walking gait with different speed and step length: Gait strategies discovered by dynamic optimization of a biped model, Journal of Mechanical Science and Technology, 31(4) (2017) 1909-1919.
[25] B. Miripour Fard, A manipulability analysis of human walking, Journal of biomechanics, 83 (2019) 157-164.
[26] B. Miripour Fard, S.M. Bruijn, On the manipulability of swing foot and stability of human locomotion, Multibody System Dynamics, 46(2) (2019) 109-125.
[27] S.J. Hasaneini, C.J.B. Macnab, J.E.A. Bertram, H. Leung, The dynamic optimization approach to locomotion dynamics: human-like gaits from a minimally-constrained biped model, Advanced Robotics, 27(11) (2013) 845-859.
[28] B. Griffin, J. Grizzle, Nonholonomic virtual constraints for dynamic walking, in: Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, IEEE, 2015, pp. 4053-4060.
[29] A. Chemori, M. Alamir, Multi-step limit cycle generation for Rabbit’s walking based on a nonlinear low dimensional predictive control scheme, Mechatronics, 16(5) (2006) 259-277.
[30] B. Miripour Fard, A. Bagheri, N. Nariman-Zadeh, Limit cycle walker push recovery based on a receding horizon control scheme, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(7) (2012) 914-926.
[31] H. Dai, R. Tedrake, Optimizing robust limit cycles for legged locomotion on unknown terrain, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, IEEE, 2012, pp. 1207-1213.
[32] X. Mu, Q. Wu, On impact dynamics and contact events for biped robots via impact effects, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(6) (2006) 1364-1372.
[33] M.J. Pavol, T.M. Owings, K.T. Foley, M.D. Grabiner, Mechanisms leading to a fall from an induced trip in healthy older adults, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(7) (2001) M428-M437.
[34] K. Mitsuoka, Y. Akiyama, Y. Yamada, S. Okamoto, Analysis of Skip Motion as a Recovery Strategy after an Induced Trip, in: Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on, IEEE, 2015, pp. 911-916.
[35] C. Shirota, A.M. Simon, T.A. Kuiken, Recovery strategy identification throughout swing phase using kinematic data from the tripped leg, in: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014, pp. 6199-6202.
[36] C. Shirota, A.M. Simon, T.A. Kuiken, Trip recovery strategies following perturbations of variable duration, Journal of biomechanics, 47(11) (2014) 2679-2684.
[37] A.F. Cordero, Human Gait, Stumble and... fall? Mechanical limitations of the recovery from a stumble, Universiteit Twente, The Netherlands, 2003.
[38] E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, B. Morris, Feedback control of dynamic bipedal robot locomotion, CRC press, 2007.
[39] F. Plestan, J.W. Grizzle, E.R. Westervelt, G. Abba, Stable walking of a 7-DOF biped robot, IEEE Transactions on Robotics and Automation, 19(4) (2003) 653-668.
[40] D.A. Winter, Biomechanics and motor control of human movement, John Wiley & Sons, New York, 2009.
[41] D.G. Hobbelen, M. Wisse, A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm, IEEE Transactions on robotics, 23(6) (2007) 1213- 1224.