[1] B.L. Dasari, J.M. Nouri, D. Brabazon, S. Naher, Graphene and derivatives - Synthesis techniques, properties and their energy applications, Energy, 140 (2017) 766-778.
[2] R. Saito, G. Dresselhaus, M.S. Dresselhaus, physical Properties of Carbon Nanotubes, Imperial College Press, 1998.
[3] D. Sen, K.S. Novoselov, P.M. Reis, M.J. Buehler, Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons, Small, 6(10) (2010) 1108-1116.
[4] F. Scarpa, R. Chowdhury, e.a. K. Kam, Dynamics of mechanical waves in periodic graphene nanoribbon assemblies, Nanoscale Res. Lett., 6(430) (2011).
[5] M. Neek-Amal, F.M. Peeters, Graphene nanoribbons subjected to axial stress, PHYSICAL REVIEW B, 82(085432) (2010).
[6] Y.T. Beni, Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling, Mechanics Research Communications, 75 (2016) 67-80.
[7] G.A. Varzandian, S. Ziaee, Analytical Solution of Non- Linear Free Vibration of Thin Rectangular Nano Plates with Various Boundary Conditions Based on Non-Local Theory, Amirkabir Journal of Mechanical Engineering, 48(4) (2017) 331–346.
[8] Y. Tang, Y. Liu, D. Zhao, Wave dispersion in viscoelastic single-walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model, Physica E: Low-dimensional Systems and Nanostructures, 87 (2017) 301-307.
[9] Y. Zhen, L. Zhou, Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory, Modern Physics Letters B, 31(8) (2017) 1750069 (16 pages).
[10] Y.T. Beni, Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams, journal of intelligent material systems and structures, 27(16) (2016) 2199-2215.
[11] A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
[12] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983) 4703–4710.
[13] S.C. Pradhan, J.K. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, J. Sound Vib., 325 (2009) 206–223.
[14] R. Nazemnezhad, Nonlocal Timoshenko beam model for considering shear effect of van der Waals interactions on free vibration of multilayer graphene nanoribbons, Composite Structures, 133 (2015) 522-528.
[15] J.-X.S. et.al., Nonlocal vibration of embedded double- layer graphene nanoribbons in in-phase and anti-phase modes, Physica E., 44 (2012) 1136–1141.
[16] T. Ragab, J. McDonald, C. Basaran, Aspect ratio effect on shear modulus and ultimate shear strength of graphene nanoribbons, Diamond & Related Materials, 74 (2017) 9–15.
[17] K. Cai, L. Liu, J. Shi, Q.H. Qin, Winding a nanotube from black phosphorus nanoribbon onto a CNT at low temperature: A molecular dynamics study, Materials Design, 121 (2017) 406-413.
[18] M. López-Suárez, G. Abadal, L. Gammaitoni, R. Rurali, Noise energy harvesting in buckled BN nanoribbons from molecular dynamics, Nano Energy, 15 (2015) 329–334.
[19] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E., 44 (2011) 719–727.
[20] E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications, Marcell Dekker Inc., 2001.
[21] S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Thermoelastic Analysis of Graphene-Based Nanomaterials, Journal of Computations & Modelling, 7(1) (2017) 1-14.
[22] S. Narendar, S. Gopalakrishnan, Temperature effects on wave propagation in nanoplates, Composites: Part B, 43 (2012) 1275–1281.
[23] Y.Z. Wang, F.M. Li, K. Kishimoto, Thermal effects on vibration properties of double-layered nanoplates at small scales, Composites: Part B, 42(5) (2011) 1311– 1317.
[24] K.-S. Na, J.-H. Kim, Thermal postbuckling investigations of functionally graded plates using 3-D finite element method, Finite Elements in Analysis and Design, 42 (2006) 749-756.
[25] L. Shen, H.S. Shen, C.L. Zhang, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput. Mater. Sci., 48 (2010) 680–685.
[26] H.-S. Shen, Y.-M. Xu, C.-L. Zhang, Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity, Comput. Methods Appl. Mech. Engrg., 267 (2013) 458-470.
[27] N. Yamaki, M. Chiba, Nonlinear vibrations of a clamped rectangular plate with initial deflection and initial edge displacement part I: theory, Thin-Walled Struct., 1 (1983) 3–29.
[28] J.K. Paik, K. Anil, T. amballi, B.J. Kim, Large deflection orthotropic plate approach to develop ultimate strength formulations for stiffened panels under combined biaxial compression/tension and lateral pressure, Thin-Walled Structures, 39 (2001) 215–246.
[29] A.H. Nayfeh, S.A. Emam, Exact solution and stability of postbuckling configurations of beams, Nonlinear Dynamics, 54 (2008) 395–408.
[30] V. Refaeinejad, O. Rahmani, S.A.H. Hosseini, An analytical solution for bending, buckling, and free vibration of FG nanobeam lying on Winkler-Pasternak elastic foundation using different nonlocal higher order shear deformation beam theories, Scientia Iranica F, 24(3) (2017) 1635-1653.
[31] A. Norouzzadeh, R. Ansari, H. Rouhi, Isogeometric vibration analysis of small-scale Timoshenko beams based on the most comprehensive size-dependent theory, Scientia Iranica F, 25(3) (2018) 1864-1878.
[32] H. Farokhi, H. Mergen, G.M. Amabili, Nonlinear resonant behavior of microbeams over the buckled state, Appl. Phys. A., 113 (2013) 297–307.
[33] J.N. Reddy, Theory and Analysis of Elastic plates and Shels: 2nd Edition, Taylor & Francis Group, 2007.
[34] M.T. et.al., Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, nano today, 5 (2010) 351-372.
[35] M.O. Valappil, V.K. Pillai, S. Alwarappan, Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications, Applied Materials Today, 9 (2017) 350–371.
[36] R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A, 375 (2010) 53–62.
[37] S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, Journal of Chemical Physics, 112 (2000) 6472–6486.
[38] T.P. Chang, J.Y. Liang, Vibration of Postbuckled Delaminated Beam-Plates, Int .J. Solids Structures, 35(12) (1998) 1199-1217.