[1] K. Javadi, M. Hajipour, Separation control using quasi- radial wall jets, aerospace science and technology, 68 (2017) 240-251.
[2] F.B. Hsiao, S.S. Sheu, Experimental studies on flow transition of a plane wall jet, The Aeronautical Journal, 100(999) (1996) 373-380.
[3] M. Turkyilmazoglu, Laminar slip wall jet of Glauert type and heat transfer, International Journal of Heat Mass Transfer, 134 (2019) 1153-1158.
[4] R.S. AbdulNour, K. Willenborg, J.J. McGrath, J.F. Foss, B.S. AbdulNour, Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions, Experimental Thermal and Fluid Science, 22(3-4) (2000) 123-131.
[5] Z. Tang, D.J. Bergstrom, J.D. Bugg, A plane turbulent wall jet on a fully rough surface, International Journal of Heat and Fluid Flow, 66 (2017) 258-264.
[6] A. Shojaeizadeh, M.R. Safaei, A.A. Alrashed, M. Ghodsian, M. Geza, M.A. Abbassi, Bed roughness effects on characteristics of turbulent confined wall jets, Measurement, 122 (2018) 325-338.
[7] M. S. Pour, S. A. G. Nassab, Numerical investigation of forced laminar convection flow of nanofluids over a backward facing step under bleeding condition, Journal of Mechanics, 28(2) (2012) N7-N12.
[8] S.K. Rathore, M.K. Das, A comparative study of heat transfer characteristics of wall-bounded jets using different turbulence models, International Journal of Thermal Sciences, 89 (2015) 337-356.
[9] A. Kumar, Mean flow characteristics of a turbulent dual jet consisting of a plane wall jet and a parallel offset jet, Computers & Fluids, 114 (2015) 48-65.
[10] N. Hnaien, S. Marzouk, H.B. Aissia, J. Jay, Wall inclination effect in heat transfer characteristics of a combined wall and offset jet flow, International Journal of Heat and Fluid Flow, 64 (2017) 66-78.
[11] I.Z. Naqavi, J.C. Tyacke, P.G. Tucker, A numerical study of a plane wall jet with heat transfer, International Journal of Heat and Fluid Flow, 63 (2017) 99-107.
[12] S. Mochizuki, S. Yamada, H. Osaka, Management of a plane turbulent wall jet by the large-eddy break-up device, JSME International Journal Series B Fluids and Thermal Engineering, 49(4) (2006) 921-927.
[13] L. Chen, R.G. Brakmann, B. Weigand, J. Rodriguez, M. Crawford, R. Poser, Experimental and numerical heat transfer investigation of an impingement jet array with V-ribs on the target plate and on the impingement plate, International Journal of Heat and Fluid Flow, 68 (2017) 126-138.
[14] H. Gu, M. Yao, P. Zhao, X. Li, M. Liu, Numerical simulation of manipulated flow and heat transfer over surface-mounted rib, International Journal of Thermal Sciences, 129 (2018) 124-134.
[15] Q. Jing, D. Zhang, Y. Xie, Numerical investigations of impingement cooling performance on flat and non- flat targets with dimple/protrusion and triangular rib, International Journal of Heat and Mass Transfer, 126 (2018) 169-190.
[16] T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ϵ eddy viscosity model for high reynolds number turbulent flows, Computers & Fluids, 24(3) (1995) 227- 238.
[17] D.C. Wilcox, Turbulence modeling for CFD, DCW industries La Canada, CA, 1998.
[18] F.R. Menter, Improved two-equation k-turbulence models for aerodynamic flows, NASA technical memorandum, 103975(1) (1992).
[19] F.R. Menter, Review of the shear-stress transport turbulence model experience from an industrial perspective, International Journal of Computational Fluid Dynamics, 23(4) (2009) 305-316.
[20] W.H. Schwarz, B. Caswell, Some heat transfer characteristics of the two-dimensional laminar incompressible wall jet, Chemical Engineering Science, 16(3-4) (1961) 338-351.
[21] J. Van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical heat transfer, 7(2) (1984) 147-163.