[1] S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 1995.
[2] M. Bahiraei, A comprehensive review on different numerical approaches for simulation in nanofluids: traditional and novel techniques, Journal of Dispersion Science and Technology, 35(7) (2014) 984-996.
[3] W.-S. Han, S.-H. Rhi, Thermal characteristics of grooved heat pipe with hybrid nanofluids, Thermal Science, 15(1) (2011) 195-206.
[4] G. Huminic, A. Huminic, I. Morjan, F. Dumitrache, Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles, International Journal of Heat and Mass Transfer, 54(1-3) (2011) 656-661.
[5] N. Kannadasan, K. Ramanathan, S. Suresh, Comparison of heat transfer and pressure drop in horizontal and vertical helically coiled heat exchanger with CuO/water based nano fluids, Experimental Thermal and Fluid Science, 42 (2012) 64-70.
[6] R. Lotfi, A.M. Rashidi, A. Amrollahi, Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, International Communications in Heat and Mass Transfer, 39(1) (2012) 108-111.
[7] S.S. Murshed, K.C. Leong, C. Yang, N.-T. Nguyen, Convective heat transfer characteristics of aqueous TiO 2 nanofluid under laminar flow conditions, International Journal of Nanoscience, 7(06) (2008) 325-331.
[8] A. Rashad, M.A. Ismael, A.J. Chamkha, M. Mansour, MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip, Journal of the Taiwan Institute of Chemical Engineers, 68 (2016) 173-186.
[9] M. Sathiyamoorthy, A.J. Chamkha, Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls, International Journal of Numerical Methods for Heat & Fluid Flow, 22(5) (2012) 677-698.
[10] M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study, International Journal of Heat and Mass Transfer, 96 (2016) 513-524.
[11] N. Rudraiah, R. Barron, M. Venkatachalappa, C. Subbaraya, Effect of a magnetic field on free convection in a rectangular enclosure, International Journal of Engineering Science, 33(8) (1995) 1075-1084.
[12] A. Kasaeipoor, B. Ghasemi, S. Aminossadati, Convection of Cu-water nanofluid in a vented T-shaped cavity in the presence of magnetic field, International Journal of Thermal Sciences, 94 (2015) 50-60.
[13] H. Heidary, R. Hosseini, M. Pirmohammadi, M. Kermani, Numerical study of magnetic field effect on nano-fluid forced convection in a channel, Journal of Magnetism and Magnetic Materials, 374 (2015) 11-17.
[14] S. Mojumder, S. Saha, S. Saha, M. Mamun, Effect of magnetic field on natural convection in a C-shaped cavity filled with ferrofluid, Procedia Engineering, 105 (2015) 96-104.
[15] A. Chamkha, M. Ismael, A. Kasaeipoor, T. Armaghani, Entropy generation and natural convection of CuOwater nanofluid in C-shaped cavity under magnetic field, Entropy, 18(2) (2016) 50.
[16] M.A. Ismael, M. Mansour, A.J. Chamkha, A. Rashad, Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field, Journal of Magnetism and Magnetic Materials, 416 (2016) 25-36.
[17] J.G. Barbosa-Saldaña, N. Anand, Flow over a threedimensional horizontal forward-facing step, Numerical Heat Transfer, Part A: Applications, 53(1) (2007) 1-17.
[18] D. Barkley, M.G.M. Gomes, R.D. Henderson, Threedimensional instability in flow over a backward-facing step, Journal of Fluid Mechanics, 473 (2002) 167-190.
[19] F. Selimefendigil, H.F. Öztop, Numerical analysis of laminar pulsating flow at a backward facing step with an upper wall mounted adiabatic thin fin, Computers & Fluids, 88 (2013) 93-107.
[20] A. Amiri, H.K. Arzani, S. Kazi, B. Chew, A. Badarudin, Backward-facing step heat transfer of the turbulent regime for functionalized graphene nanoplatelets based water–ethylene glycol nanofluids, International Journal of Heat and Mass Transfer, 97 (2016) 538-546.
[21] K.A. Mohammed, A.A. Talib, A. Nuraini, K. Ahmed, Review of forced convection nanofluids through corrugated facing step, Renewable and Sustainable Energy Reviews, 75 (2017) 234-241.
[22] A.S. Kherbeet, H. Mohammed, B. Salman, H.E. Ahmed, O.A. Alawi, Experimental and numerical study of nanofluid flow and heat transfer over microscale backward-facing step, International Journal of Heat and Mass Transfer, 79 (2014) 858-867.
[23] F. Selimefendigil, H.F. Öztop, Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall, Journal of Thermal Science and Engineering Applications, 10(4) (2018) 041003.
[24] E. Abu-Nada, Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, International Journal of Heat and Fluid Flow, 29(1) (2008) 242-249.
[25] J. Buongiorno, Convective transport in nanofluids, Journal of heat transfer, 128(3) (2006) 240-250.
[26] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of heat and Mass transfer, 43(19) (2000) 3701-3707.
[27] D. Wen, Y. Ding, Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels, Microfluidics and Nanofluidics, 1(2) (2005) 183-189.
[28] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, International Journal of heat and fluid flow, 21(1) (2000) 58-64.
[29] M. Bahiraei, S. Mostafa Hosseinalipour, M. Hangi, Prediction of convective heat transfer of Al2O3-water nanofluid considering particle migration using neural network, Engineering Computations, 31(5) (2014) 843- 863.
[30] M. Sheikholeslami, S. Abelman, Two-phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field, IEEE Transactions on Nanotechnology, 14(3) (2015) 561-569.
[31] M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi, Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model, Journal of Magnetism and Magnetic Materials, 374 (2015) 36-43.
[32] G. McNab, A. Meisen, Thermophoresis in liquids, Journal of Colloid and Interface Science, 44(2) (1973) 339-346.
[33] H. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20(4) (1952) 571-571.
[34] K. Khanafer, K. Vafai, M. Lightstone, Buoyancydriven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International journal of heat and mass transfer, 46(19) (2003) 3639-3653.
[35] S.G. Johnsen, T.M. Pääkkönen, S. Andersson, S.T. Johansen, B. Wittgens, On the wall boundary conditions for species-specific mass conservation equations in mathematical modelling of direct precipitation fouling from supersaturated, multi-component fluid mixtures, arXiv preprint arXiv:1703.01448, (2017).
[36] S. Acharya, G. Dixit, Q. Hou, Laminar mixed convection in a vertical channel with a backstep: a benchmark study, ASME-PUBLICATIONS-HTD, 258 (1993) 11-11.
[37] F. Selimefendigil, H.F. Öztop, Effect of a rotating cylinder in forced convection of ferrofluid over a backward facing step, International Journal of Heat and Mass Transfer, 71 (2014) 142-148.
[38] J.-T. Lin, B.F. Armaly, T. Chen, Mixed convection in buoyancy-assisting, vertical backward-facing step flows, International Journal of Heat and Mass Transfer, 33(10) (1990) 2121-2132.
[39] B.R. Dyne, D.W. Pepper, F.P. Brueckner, Mixed convection in a vertical channel with a backward facing step: A benchmark problem, ASME-PUBLICATIONSHTD, 258 (1993) 49-49.
[40] M. El-Refaee, M. Elsayed, N. Al-Najem, I. Megahid, Steady-state solutions of buoyancy-assisted internal flows using a fast false implicit transient scheme (FITS), International Journal of Numerical Methods for Heat & Fluid Flow, 6(6) (1996) 3-23.
[41] R. Cochran, R. Horstman, Y. Sun, A. Emery, Benchmark Solution for a Vertical, Buoyancy-Assisted Laminar Backward-Facing Step Flow Using Finite Element, Finite Volume and Finite Difference Methods, ASMEPUBLICATIONS- HTD, 258 (1993) 37-37.
[42] M. Bahiraei, S.M. Hosseinalipour, Thermal dispersion model compared with Euler-Lagrange approach in simulation of convective heat transfer for nanoparticle suspensions, Journal of Dispersion Science and Technology, 34(12) (2013) 1778-1789.
[43] E. Esmaeilzadeh, H. Almohammadi, S.N. Vatan, A. Omrani, Experimental investigation of hydrodynamics and heat transfer characteristics of γ-Al2O3/water under laminar flow inside a horizontal tube, International Journal of Thermal Sciences, 63 (2013) 31-37.