[1] S. B. Singh, S. Ray, Modeling the anisotropy and creep in orthotropic aluminum-silicon carbide composite rotating disc, Mechanics of Materials, 34(6) (2002) 363-372.
[2] M. Saadatfar, Effect of Interlaminar Weak Bonding and Constant Magnetic Field on the Hygrothermal Stresses of a FG Hybrid Cylindrical Shell Using DQM, Journal of Stress Analysis, 3(1) (2018) 93-110.
[3] A. H. Akbarzadeh, Z. T. Chen, Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field, Composite Structure, 97 (2013) 317–331.
[4] M. N. M. Allam, A. M. Zenkour, R. Tantawy, Analysis of Functionally Graded Piezoelectric Cylinders in a Hygrothermal Environment, Advances in Applied Mathematics and Mechanics, 6(2) (2014) 233-246.
[5] M. Saadatfar, M. Aghaie-Khafri, Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation, Smart Materials and Structures, 23(3), (2014) 1-13.
[6] M. Saadatfar, M. Aghaie-Khafri, Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder resting on an elastic foundation, Smart Structures and Systems 15(6) (2015) 1411-1437.
[7] M. Saadatfar, M. Aghaie-Khafri, Hygrothermal analysis of a rotating smart exponentially graded cylindrical shell with imperfect bonding supported by an elastic foundation, Aerospace Science and Technology, 43 (2015) 37–50.
[8] M. Saadatfar, M. Aghaie-Khafri, On the magnetothermo- elastic behavior of a FGM cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation, Journal of Solid Mechanics, 7(3), (2015) 344-363.
[9] M. Saadatfar, M. Aghaie-Khafri, Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field, Journal of Intelligent Materials Systems and Structures, 27 (2015) 512-527.
[10] M. Saadatfar, M. Aghaie-Khafri, On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition, Journal of Thermal Stresses, 38 (2015) 854–881.
[11] M. Saadatfar, Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding, Meccanica, 50 (2015) 2135–2152.
[12] A. M. Zenkour, Bending analysis of piezoelectric exponentially graded fiber-reinforced composite cylinders in hygrothermal environments, International Journal of Mechanics and Materials in Design, 13(4) (2017) 515–529.
[13] M. Vinyas, S. C. Kattimani, Hygrothermal Analysis of Magneto-Electro-Elastic Plate using 3D Finite Element Analysis, Composite Structures, 180 (2017) 617-637.
[14] T. Dai, H. L. Dai, Analysis of a rotating FGMEE circular disk with variable thickness under thermal environment, Applied Mathematical Modelling, 45 (2017) 900–924.
[15]V. K. Gupta, S.B. Singh, H.N. Chandrawat, S. Ray, Creep behavior of a rotating functionally graded composite disc operating under thermal gradient. Metallurgical and Materials Transactions A, 35 (2004) 1381–1391.
[16] D. Deepak, V. K. Gupta, A. K. Dham, Creep modeling in functionally graded rotating disc of variable thickness, Journal of Mechanical Science and Technology, 24(11) (2010) 2221-2232.
[17] M. Rattan, N. Chamoli and S.B. Singh, Creep analysis of an isotropic functionally graded rotating disc, International Journal of Contemporary Mathematical Sciences, 5(9) (2010) 419–431.
[18] D. Dharmpal, M. Garg, V.K. Gupta, Creep behavior of rotating FGM disc with linear and hyperbolic thickness profiles. Kragujevac Journal of Science, 37 (2015) 35– 48.
[19] V. Gupta, S.B. Singh, Mathematical modeling of creep in a functionally graded rotating disc with varying thickness. Regenerative Engineering and Translational Medicine, 2(3) (2016) 126–140.
[20] T. Bose, M. Rattan, Effect of thermal gradation on steady state creep of functionally graded rotating disc, European Journal of Mechanics / A Solids, 67 (2018) 169–176.
[21] A. Loghman, M. Abdollahian, A. Jafarzadeh Jazi, A. Ghorbanpour Arani, Semi-analytical solution for electromagnetothermoelastic creep response of functionally graded piezoelectric rotating disk, International Journal of Thermal Sciences, 65 (2013) 254-266.
[22] A. Loghman and M. Azami, A novel analytical-numerical solution for nonlinear time-dependent electro-thermomechanical creep behavior of rotating disk made of piezoelectric polymer, Applied Mathematical Modelling, 40 (2016) 4795–4811.
[23] D. Zhou, M. Kamlah, Room-temperature creep of soft PZT under static electrical and compressive stress loading, Acta Materialia 54(5) (2006) 1389-1396.
[24] W. J. Chang, Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture, Applied Mathematical Modelling, 18 (1994) 467-473.
[25] A.H. Akbarzadeh, Z.T. Chen, Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading, Smart Materials and Structures, 21 (2012) 125-133.
[26] M. Saadatfar, A.S. Razavi, Piezoelectric hollow cylinder with thermal gradient, Journal of Mechanical Science and Technology, 23 (2009) 45-53.
[27] H. L. Dai, H. J. Jiang, L. Yang, Time-dependent behaviors of a FGPM hollow sphere under the coupling of multifields, Solid State Sciences, 14 (2012) 587-597.
[28] S.A. Hosseini Kordkheili, R. Naghdabadi, Thermoelastic analysis of a functionally graded rotating disk, Composite Structures, 79 (2007) 508-516.