[1]  G. Astarita,  G.  Marrucci,  Principles  of  Non-Newtonian Fluid Mechanics, McGraw-Hill, London, 1974.
                                                                                                                [2]  R.B.  Bird,  R.C. Armstrong,  O.  Hassager,  Dynamics  of Polymeric Liquids, Fluid Dynamics, vol. 1, Wiley, New York, 1987.
                                                                                                                [3]  X. Qiu, J. Duan, J. Luo, P.  N. Kaloni , Y. Liu.  Parameter effects on shear stress of Johnson–Segalman fluid in Poiseuille flow. International Journal of Non-Linear Mechanics, 55(2010), 140–146.
                                                                                                                [4]  R.I.      Tanner,      Engineering      Rheology,      Oxford UniversityPress, Oxford,1992.
                                                                                                                [5]  M. W. Johnson, D. A. Segalman, Model for viscoelastic fluid behavior which allows non-affine deformation. J. Non Newton. Fluid Mech., 2(1977), 255–270.
                                                                                                                [6]  M.W. Johnson, D. Segalman, A new model for viscoelastic fluid behavior which allows non-affine deformation, Journal of Non-Newtonian Fluid Mechanics, 2(1977), 255–270.
                                                                                                                [7]   I.J.  Rao,  K.R.  Rajagopal,  Some  simple  flows  of  a Johnson–Segalman fluid, Acta Mechanica, 132(1999), 209–219.
                                                                                                                [8]  R.W.  Kolkka,  D.S.  Malkus,  M.G.Hansen,  G.R.Ierley, Spurt  phenomena  of  the  Johnson–Segalman  fluid  and related models, Journal of Non-Newtonian Fluid Mechanics, 29(1988), 303–335, 1988.
                                                                                                                [9]  I.E.   Ireka,   T.   Chinyoka,   Non-isothermal   flow   of   a Johnson–Segalman liquid in a lubricated pipe  with  wall slip, Journal of Non-Newtonian Fluid Mechanics, 192(2013), 20–28.
                                                                                                                [10]  S.  Nadeem,  N.S.  Akbar,  Influence  of  heat  and  mass transfer on the peristaltic flow of a Johnson–Segalman fluid in a vertical asymmetric channel with induced MHD, J. Taiwan Inst. Chem. Eng., 42(2011), 58–66.
                                                                                                                [11]  T. Hayat, Y. Wang, A.M. Siddiqui, K. Hutter, Peristaltic motion of a Johnson–Segalman fluid in a planar channel, Math. Probl. Eng. 1(2003), 1–23.
                                                                                                                [12]  T.   Hayat, F.M.   Mahomed, S. Asghar, Peristaltic flow of a magnetohydrodynamic Johnson–Segalman fluid, Nonlinear Dynam., 40(2005), 375–385.
                                                                                                                [13]  M.  Elshahed,  M.  Haroun,  Peristaltic  transport  of  a Johnson–Segalman fluid under effect of a magnetic field, Math. Probl. Eng., 6(2005), 663–667.
                                                                                                                [14]  R. W. Kolkka, D.S. Malkus, M.G. Hansen, G.R. IerIy, A.R. Worthing, Spurt phenomenon of the Johnson– Segalman fluid and related models, J. Non-Newton. Fluid Mech., 29(1988), 303–335.
                                                                                                                [15]  I.  J.  Rao,  K.R.  Rajagopal,  Some  simple  flows  of  a Johnson–Segalman fluid, Acta Mech., 132(1999), 209– 219.
                                                                                                                [16]   M.K. Alam, A.M. Siddiqui , M.T. Rahim, S. Islam Thin- film flow of magnetohydrodynamic (MHD) Johnson– Segalman fluid on vertical surfaces using the Adomian decomposition method. Applied Mathematics and Computation, 219(2012), 3956–3974.
                                                                                                                [17]   S.  Hina, T.  Hayat, A. Alsaedi  Heat  and  mass  transfer effects on the peristaltic flow of Johnson–Segalman fluid in a curved channel with compliant walls, International Journal of Heat and Mass Transfer, 55(2012), 3511– 3521.
                                                                                                                [18]   Y.  Wang,  T.  Hayat,  K.  Hutter,  Peristaltic  transport  of a Johnson–Segalman fluid through a deformable tube, Theor. Comput. Fluid Dyn, 21(2007), 369–380.
                                                                                                                [19]   I. E. Irekaa , T. Chinyokaa Analysis of shear banding phenomena in non-isothermal flow of fluids governed by the diffusive Johnson–Segalman model. Applied Mathematical Modelling 40 (2016) 3843–3859.
                                                                                                                [20]   J. Howell. Numerical approximation of shear-thinning and Johnson–Segalman viscoelastic fluid flows. A Dissertation Presented to the Graduate School of Clemson University, 2007.
                                                                                                                [21]   T. Hayat, Z. Iqbal, M. Sajid, K. Vajravelu. Heat transfer in pipe flow of a Johnson–Segalman fluid, International Communication in Heat and Mass Transfer, 35(2008), 1297–1301.
                                                                                                                [22]   T.  Hayat, R.  Ellahi, S. Asghar. The influence of variable viscosity and viscous dissipation on the non-Newtonian flow: Analytical solution. Communication in Nonlinear Science and Numerical Simulation, 12(2007), 300–313.
                                                                                                                [23]   A.   Fernandez,   On   some   approximate   methods   for nonlinear models. Appl Math Comput., 215(2009) 168- 74.
                                                                                                                [24]   A. Aziz, and M. N. Bouaziz. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, 52(2011), 2876-82.
                                                                                                                [25]   A.  Sadollah,    Y.  Choi,    D.  G.    Yoo,  J.  H.    Kim, Metaheuristic algorithms for approximate solution to ordinary differential equations of longitudinal fins having various profiles. Applied Soft Computing, 33(2015), 360–379.
                                                                                                                [26]   R.   W.   Lewis.   P.   Nithiarasu   and   K.N.   Seetharamu Fundamental of the Finite Element Method for Heat and Fluid Flow, John Wiley and Sons. 2004.
                                                                                                                [27]   M. G. Sobamowo Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual. Applied Thermal Engineering, 99(2016), 1316–1330.
                                                                                                                [28]   D. D.Ganji.   M. Rahgoshay, M. Rahimi and M. Jafari Numerical investigation of fin efficiency and temperature distribution of conductive, convective and radiative straight fins. IJRRAS, August 2010
                                                                                                                [29] C.  W.  Bert.  An  improved  approximate  method  for analyzing steady heat conduction. Communication in Applied Numerical Methods, 2(1986), 587-592.