On the Flow and Heat Transfer Analysis of Pipe Conveying Johnson-Segalman Fluid: Analytical Solution and Parametric Studies

Document Type : Research Article

Author

Department of Mechanical Engineering, University of Lagos, Nigeria

Abstract

In this study, Galerkin’s method of weighted residual is used to present simple approximate analytical solutions to flow and heat transfer characteristics in a pipe conveying Johnson-Segalman fluid. The developed approximate analytical solutions are verified with the results in literature. Thereafter, the solutions are used to investigate the effects of the pertinent parameters such as relaxation time parameter, viscosity parameter and Brinkman number on the fluid velocity and the temperature distributions of the pipe flow. From the results, it shows that the fluid velocity and temperature increase with the relaxation time parameter and Brinkman number. It is also established that relaxation time parameter increases with increase in the velocity of the fluid but decreases with increase in the fluid temperature. It is found that the relaxation parameter effect on the velocity distribution are not significant as the viscosity parameter approaches unity and when it is greater than unity. It is hope that the study will provide more physical insight into the flow phenomena.

Keywords

Main Subjects


[1]  G. Astarita,  G.  Marrucci,  Principles  of  Non-Newtonian Fluid Mechanics, McGraw-Hill, London, 1974.
[2]  R.B.  Bird,  R.C. Armstrong,  O.  Hassager,  Dynamics  of Polymeric Liquids, Fluid Dynamics, vol. 1, Wiley, New York, 1987.
[3]  X. Qiu, J. Duan, J. Luo, P.  N. Kaloni , Y. Liu.  Parameter effects on shear stress of Johnson–Segalman fluid in Poiseuille flow. International Journal of Non-Linear Mechanics, 55(2010), 140–146.
[4]  R.I.      Tanner,      Engineering      Rheology,      Oxford UniversityPress, Oxford,1992.
[5]  M. W. Johnson, D. A. Segalman, Model for viscoelastic fluid behavior which allows non-affine deformation. J. Non Newton. Fluid Mech., 2(1977), 255–270.
[6]  M.W. Johnson, D. Segalman, A new model for viscoelastic fluid behavior which allows non-affine deformation, Journal of Non-Newtonian Fluid Mechanics, 2(1977), 255–270.
[7]   I.J.  Rao,  K.R.  Rajagopal,  Some  simple  flows  of  a Johnson–Segalman fluid, Acta Mechanica, 132(1999), 209–219.
[8]  R.W.  Kolkka,  D.S.  Malkus,  M.G.Hansen,  G.R.Ierley, Spurt  phenomena  of  the  Johnson–Segalman  fluid  and related models, Journal of Non-Newtonian Fluid Mechanics, 29(1988), 303–335, 1988.
[9]  I.E.   Ireka,   T.   Chinyoka,   Non-isothermal   flow   of   a Johnson–Segalman liquid in a lubricated pipe  with  wall slip, Journal of Non-Newtonian Fluid Mechanics, 192(2013), 20–28.
[10]  S.  Nadeem,  N.S.  Akbar,  Influence  of  heat  and  mass transfer on the peristaltic flow of a Johnson–Segalman fluid in a vertical asymmetric channel with induced MHD, J. Taiwan Inst. Chem. Eng., 42(2011), 58–66.
[11]  T. Hayat, Y. Wang, A.M. Siddiqui, K. Hutter, Peristaltic motion of a Johnson–Segalman fluid in a planar channel, Math. Probl. Eng. 1(2003), 1–23.
[12]  T.   Hayat, F.M.   Mahomed, S. Asghar, Peristaltic flow of a magnetohydrodynamic Johnson–Segalman fluid, Nonlinear Dynam., 40(2005), 375–385.
[13]  M.  Elshahed,  M.  Haroun,  Peristaltic  transport  of  a Johnson–Segalman fluid under effect of a magnetic field, Math. Probl. Eng., 6(2005), 663–667.
[14]  R. W. Kolkka, D.S. Malkus, M.G. Hansen, G.R. IerIy, A.R. Worthing, Spurt phenomenon of the Johnson– Segalman fluid and related models, J. Non-Newton. Fluid Mech., 29(1988), 303–335.
[15]  I.  J.  Rao,  K.R.  Rajagopal,  Some  simple  flows  of  a Johnson–Segalman fluid, Acta Mech., 132(1999), 209– 219.
[16]   M.K. Alam, A.M. Siddiqui , M.T. Rahim, S. Islam Thin- film flow of magnetohydrodynamic (MHD) Johnson– Segalman fluid on vertical surfaces using the Adomian decomposition method. Applied Mathematics and Computation, 219(2012), 3956–3974.
[17]   S.  Hina, T.  Hayat, A. Alsaedi  Heat  and  mass  transfer effects on the peristaltic flow of Johnson–Segalman fluid in a curved channel with compliant walls, International Journal of Heat and Mass Transfer, 55(2012), 3511– 3521.
[18]   Y.  Wang,  T.  Hayat,  K.  Hutter,  Peristaltic  transport  of a Johnson–Segalman fluid through a deformable tube, Theor. Comput. Fluid Dyn, 21(2007), 369–380.
[19]   I. E. Irekaa , T. Chinyokaa Analysis of shear banding phenomena in non-isothermal flow of fluids governed by the diffusive Johnson–Segalman model. Applied Mathematical Modelling 40 (2016) 3843–3859.
[20]   J. Howell. Numerical approximation of shear-thinning and Johnson–Segalman viscoelastic fluid flows. A Dissertation Presented to the Graduate School of Clemson University, 2007.
[21]   T. Hayat, Z. Iqbal, M. Sajid, K. Vajravelu. Heat transfer in pipe flow of a Johnson–Segalman fluid, International Communication in Heat and Mass Transfer, 35(2008), 1297–1301.
[22]   T.  Hayat, R.  Ellahi, S. Asghar. The influence of variable viscosity and viscous dissipation on the non-Newtonian flow: Analytical solution. Communication in Nonlinear Science and Numerical Simulation, 12(2007), 300–313.
[23]   A.   Fernandez,   On   some   approximate   methods   for nonlinear models. Appl Math Comput., 215(2009) 168- 74.
[24]   A. Aziz, and M. N. Bouaziz. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, 52(2011), 2876-82.
[25]   A.  Sadollah,    Y.  Choi,    D.  G.    Yoo,  J.  H.    Kim, Metaheuristic algorithms for approximate solution to ordinary differential equations of longitudinal fins having various profiles. Applied Soft Computing, 33(2015), 360–379.
[26]   R.   W.   Lewis.   P.   Nithiarasu   and   K.N.   Seetharamu Fundamental of the Finite Element Method for Heat and Fluid Flow, John Wiley and Sons. 2004.
[27]   M. G. Sobamowo Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual. Applied Thermal Engineering, 99(2016), 1316–1330.
[28]   D. D.Ganji.   M. Rahgoshay, M. Rahimi and M. Jafari Numerical investigation of fin efficiency and temperature distribution of conductive, convective and radiative straight fins. IJRRAS, August 2010
[29] C.  W.  Bert.  An  improved  approximate  method  for analyzing steady heat conduction. Communication in Applied Numerical Methods, 2(1986), 587-592.