[1] G. Astarita, G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London, 1974.
[2] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Fluid Dynamics, vol. 1, Wiley, New York, 1987.
[3] X. Qiu, J. Duan, J. Luo, P. N. Kaloni , Y. Liu. Parameter effects on shear stress of Johnson–Segalman fluid in Poiseuille flow. International Journal of Non-Linear Mechanics, 55(2010), 140–146.
[4] R.I. Tanner, Engineering Rheology, Oxford UniversityPress, Oxford,1992.
[5] M. W. Johnson, D. A. Segalman, Model for viscoelastic fluid behavior which allows non-affine deformation. J. Non Newton. Fluid Mech., 2(1977), 255–270.
[6] M.W. Johnson, D. Segalman, A new model for viscoelastic fluid behavior which allows non-affine deformation, Journal of Non-Newtonian Fluid Mechanics, 2(1977), 255–270.
[7] I.J. Rao, K.R. Rajagopal, Some simple flows of a Johnson–Segalman fluid, Acta Mechanica, 132(1999), 209–219.
[8] R.W. Kolkka, D.S. Malkus, M.G.Hansen, G.R.Ierley, Spurt phenomena of the Johnson–Segalman fluid and related models, Journal of Non-Newtonian Fluid Mechanics, 29(1988), 303–335, 1988.
[9] I.E. Ireka, T. Chinyoka, Non-isothermal flow of a Johnson–Segalman liquid in a lubricated pipe with wall slip, Journal of Non-Newtonian Fluid Mechanics, 192(2013), 20–28.
[10] S. Nadeem, N.S. Akbar, Influence of heat and mass transfer on the peristaltic flow of a Johnson–Segalman fluid in a vertical asymmetric channel with induced MHD, J. Taiwan Inst. Chem. Eng., 42(2011), 58–66.
[11] T. Hayat, Y. Wang, A.M. Siddiqui, K. Hutter, Peristaltic motion of a Johnson–Segalman fluid in a planar channel, Math. Probl. Eng. 1(2003), 1–23.
[12] T. Hayat, F.M. Mahomed, S. Asghar, Peristaltic flow of a magnetohydrodynamic Johnson–Segalman fluid, Nonlinear Dynam., 40(2005), 375–385.
[13] M. Elshahed, M. Haroun, Peristaltic transport of a Johnson–Segalman fluid under effect of a magnetic field, Math. Probl. Eng., 6(2005), 663–667.
[14] R. W. Kolkka, D.S. Malkus, M.G. Hansen, G.R. IerIy, A.R. Worthing, Spurt phenomenon of the Johnson– Segalman fluid and related models, J. Non-Newton. Fluid Mech., 29(1988), 303–335.
[15] I. J. Rao, K.R. Rajagopal, Some simple flows of a Johnson–Segalman fluid, Acta Mech., 132(1999), 209– 219.
[16] M.K. Alam, A.M. Siddiqui , M.T. Rahim, S. Islam Thin- film flow of magnetohydrodynamic (MHD) Johnson– Segalman fluid on vertical surfaces using the Adomian decomposition method. Applied Mathematics and Computation, 219(2012), 3956–3974.
[17] S. Hina, T. Hayat, A. Alsaedi Heat and mass transfer effects on the peristaltic flow of Johnson–Segalman fluid in a curved channel with compliant walls, International Journal of Heat and Mass Transfer, 55(2012), 3511– 3521.
[18] Y. Wang, T. Hayat, K. Hutter, Peristaltic transport of a Johnson–Segalman fluid through a deformable tube, Theor. Comput. Fluid Dyn, 21(2007), 369–380.
[19] I. E. Irekaa , T. Chinyokaa Analysis of shear banding phenomena in non-isothermal flow of fluids governed by the diffusive Johnson–Segalman model. Applied Mathematical Modelling 40 (2016) 3843–3859.
[20] J. Howell. Numerical approximation of shear-thinning and Johnson–Segalman viscoelastic fluid flows. A Dissertation Presented to the Graduate School of Clemson University, 2007.
[21] T. Hayat, Z. Iqbal, M. Sajid, K. Vajravelu. Heat transfer in pipe flow of a Johnson–Segalman fluid, International Communication in Heat and Mass Transfer, 35(2008), 1297–1301.
[22] T. Hayat, R. Ellahi, S. Asghar. The influence of variable viscosity and viscous dissipation on the non-Newtonian flow: Analytical solution. Communication in Nonlinear Science and Numerical Simulation, 12(2007), 300–313.
[23] A. Fernandez, On some approximate methods for nonlinear models. Appl Math Comput., 215(2009) 168- 74.
[24] A. Aziz, and M. N. Bouaziz. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, 52(2011), 2876-82.
[25] A. Sadollah, Y. Choi, D. G. Yoo, J. H. Kim, Metaheuristic algorithms for approximate solution to ordinary differential equations of longitudinal fins having various profiles. Applied Soft Computing, 33(2015), 360–379.
[26] R. W. Lewis. P. Nithiarasu and K.N. Seetharamu Fundamental of the Finite Element Method for Heat and Fluid Flow, John Wiley and Sons. 2004.
[27] M. G. Sobamowo Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual. Applied Thermal Engineering, 99(2016), 1316–1330.
[28] D. D.Ganji. M. Rahgoshay, M. Rahimi and M. Jafari Numerical investigation of fin efficiency and temperature distribution of conductive, convective and radiative straight fins. IJRRAS, August 2010
[29] C. W. Bert. An improved approximate method for analyzing steady heat conduction. Communication in Applied Numerical Methods, 2(1986), 587-592.