Softening Effect in Stretching Stiffness of a Rippled Graphene: Molecular Dynamics Simulation

Document Type : Research Article


Faculty of Mechanical and Materials Engineering, Graduate University of Advanced Technology, Kerman, Iran


 In this paper, the stretching stiffness of a rippled graphene is studied using the molecular dynamics simulation. The uneven surface of the rippled graphene is modeled by a random function with different amplitudes and frequencies. Two models of the rippled graphene are simulated. In the first model, it is supposed that the graphene has random wrinkles with different amplitudes and frequencies. It can be regarded as an opened crumpled graphene. In the second model, the uneven surface of the rippled graphene is modeled by the trigonometric sine shapes. The adaptive intermolecular reactive bond order potential function is utilized to model the covalence bonding of the carbon atoms and the Nose-Hoover thermostat is used to control temperature of the system. It is implemented in the software package large scale atomic/molecular massively parallel simulator in order to simulate covalent bond formation between carbon atoms in the structure of graphene layer. Results are presented for both zigzag and armchair rippled graphene sheets with different initial surfaces. It is concluded that the failure strain of a rippled graphene under uniaxial tensile loading is less than that of a flat one. It is also demonstrated that the rippled graphene has softening stretching behavior due to its uneven surface.


Main Subjects

[1] K. S. Novoselov, A. K. Geim, S. V Morozov, and D. Jiang, Electric Field Effect in Atomically Thin Carbon
Films, Science Magazine, 306(5696) (2004), 666–669.
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V Khotkevich, S. V Morozov, and A. K. Geim, Two dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America, 102(30) (2005), 10451-10453.
[3] F. Scarpa, S. Adhikari, and A. Srikantha Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, 20(6) (2009), 065709.
[4] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys, 81 (1) (2009) 109-162.
[5] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442(7100) (2006), 282-286.
[6] Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites, Nat. Commun., 4 (2013) 2114.
[7] S. Liu and X. Guo, Carbon nanomaterials field-effect-transistor-based biosensors, NPG Asia Mater, 4 (2012) e23.
[8] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett, 8 (2008) 3498-3502.
[9] A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9 (2005) 674-679.
[10] T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, and C. M. Lieber, Graphene and nanowire transistors for cellular interfaces and electrical recording, Nano Lett. 10 (2010) 1098-1102.
[11] J. C. Meyer, J. C. Meyer, a. K. Geim, a. K. Geim, M. I. Katsnelson, M. I. Katsnelson, K. S. Novoselov, K. S. Novoselov, T. J. Booth, T. J. Booth, S. Roth, and S. Roth, The structure of suspended graphene sheets, Nature, 446 (2007) 60-63.
[12] M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. Mcgill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. Mceuen, Graphene kirigami. Nature, 524 (2015) 204-207.
[13] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388.
[14] C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology, 17 (2006) 864-870.
[15] S.C. Pradhan, J.K. Phadikar, Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models, Phys. Lett. A, 373 (2009) 1062.
[16] J.-L. Tsai and J.-F. Tu, Characterizing mechanical properties of graphite using molecular dynamics simulation, Mater. Des, 31 (2010) 194-199.
[17] R. Ansari, B. Motevalli, A. Montazeri, and S. Ajori, Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation, Solid State Commun, 151 (2011) 1141-1146.
[18] Y. Xiang and H. Shen, Shear buckling of rippled graphene by molecular dynamics simulation, Mater. Today Commun, 3 (2015) 149-155.
[19] A. A. Griffith, Philos. Trans. R. Soc. London Ser, The phenomena of rupture and flow in solids, pill. Trance. R Soc. London A, 221 (1921) 163-198.
[20] F. Liu, P. Ming, J. Li, and T. Peierls, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B, 76 (2007) 064120.
[21] M. C. Wang, C. Yan, L. Ma, N. Hu, and M. W. Chen, Effect of defects on fracture strength of graphene sheets, Comput. Mater. Sci, 54 (2012) 236-239.
[22] N. D. Mermin, Crystalline Order in Two Dimensions, Phys. Rev, 176 (1968) 250-254.
[23] A. Fasolino and M. I. Katsnelson, Intrinsic ripples in graphene, Nat. Mater, 6 (2007) 858-861.
[24] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C. N. Lau, Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat. Nanotechnol, 4 (2009) 562-566.
[25] G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, Subjecting a Graphene Monolayer to Tension and Compression, Small, 5 (2009) 2397-2402.
[26] E. Jomehzadeh and N. M. Pugno, Bending stiffening of graphene and other 2D materials via controlled rippling, Compos. Part B Eng, 83 (2015) 194-202.
[27] S. Stuart, A. Tutein, and J. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys, 112 (2000) 6472-6486.
[28] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys, 117 (1995) 1-19.
[29] D. W. Brenner, O. a Shenderova, J. a Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14 (2002) 783-802.
[30] W. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985) 1695-1697.
[31] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1989).