[1] C.D. Andereck, S.S. Liu, Swinney, H.L. Flow regimes in a circular Couette system within dependently rotating cylinders. Journal of Fluid Mechanics, 164 (1986) 155-183.
[2] N. Ashrafi, A. Hazbavi, Flow pattern and stability of pseudoplastic axial Taylor–Couette flow, International Journal of Non-Linear Mechanics, 47 (2012), 905-917.
[3] J. R. A. Pearson, Mechanics of Polymer Processing, Elsevier, London, (1985).
[4] N. Phan-Thien, R.I. Tanner, New constitutive equation derived from network theory, Journal Non-Newtonian Fluid Mech, 2 (1977) 353–365.
[5] N. Phan-Thien, A non-linear network viscoelastic model, Journal Rheol, 22 (1978) 259–283.
[6] P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids, Journal Non-Newtonian Fluid Mech, 387 (1999) 271–280.
[7] F. T. Pinho, P. J. Oliveira, Axial annular flow of a nonlinear viscoelastic fluid an analytical solution, Journal Non-Newtonian Fluid Mech, 93 (2000) 325–337.
[8] M. A. Alves, P.J. Pinho, F.T. Oliveira, Study of steady pipe and channel flows of a single-mode Phan Thien–Tanner fluid, Journal Non-Newtonian Fluid Mech, 101 (2001) 55–76.
[9] D.O.A. Cruz, F.T. Pinho, Skewed Poiseuille-Couette flows of PTT fluids in concentric annuli and channels, Journal Non-Newtonian Fluid Mech, 121 (2004) 1–14.
[10] M. Mirzazadeh, M.P. Escudier, F. Rashidi, S.H. Hashemabadi, Analytical solution of purely tangential flow for PTT viscoelastic fluid through concentric annulus, Journal Non-Newtonian Fluid Mech, 129 (2005) 88–97.
[11] R.B. Bird, P.J. Dotson, N.L. Johnson, Polymer solution rheology based on a finitely extensible bead-spring chain model, Journal Non-Newtonian Fluid Mech, 7 (1980) 213–235.
[12] .J. Oliveira, An exact solution for tube and slit flow of a FENE-P fluid, Act a Mech, 158 (2002) 157–167.
[13] D.O.A. Cruz, F.T. Pinho, P.J. Oliveira, Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution, Journal Non-Newtonian Fluid Mech, 132 (2005) 28–35.
[14] Tasnim, S. H., Mahmud S. and Mamun, M. A. H., Entropy generation in a porous channel with hydromagnetic effect, Exergy, an Int. Journal, 2 (2002) 300-308.
[15] Mahmud, S. and Fraser R. A., The second law analysis in fundamental convective heat transfer problems, Int. J. of Therm. Sci., 42 (2003) 177–186.
[16] Carrington, C. G. and Sun, Z. F., Second law analysis of combined heat and mass transfer in internal flow and external flows. Int. J. Heat and Fluid Flow, 132 (1992) 65–70.
[17] Arpaci, V.S. and Selamet A., Entropy production in boundary layers, J. Thermo phys. Heat Transfer, 4 (1990) 404–407.
[18] Abu-Hijleh, B. A. K., entropy generation in laminar convection from an isothermal cylinder in cross flow, energy, 23 (1998) 851-857.
[19] Khalkhali, H. Faghri, A. and Zuo, Z. J., Entropy generation in a heat pipe system, Applied Thermal Eng., 19 (1999) 1027-1043.
[20] N. Ashrafi, A. Hazbavi, Heat transfer in flow of nonlinear fluids with viscous dissipation, Archive of Applied Mechanics, 83 (2013) 1739-1754.
[21] A. Hazbavi, Second Law Analysis of Magnetorheological Rotational Flow with Viscous Dissipation, Journal of Thermal Science and Engineering Applications, 8 (2016) 021020.
[22] K. Khellaf, G. Lauriat, Numerical study of heat transfer in a non-Newtonian Carreau-fluid between rotating concentric vertical cylinders, Journal Non-Newtonian Fluid Mech, 89 (2000) 45–61
[23] R.M. Manglik, P. Fang, Thermal processing of viscous non-Newtonian fluids in annular ducts: effects of power-law rheology, duct eccentricity, and thermal boundary conditions, Int. J. Heat Mass Transfer, 45 (2002) 803–814.
[24] R.B. Bird, R.C. Armstrong, Dynamics of Polymeric Liquids, Wiley, New York, (1987).
[25] R. Keunings, M. J. Crochet, Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction, J. Non-Newtonian Fluid Mech, 14 (1984) 279–299.