Document Type : Research Article
Authors
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2 Iowa State University, Departments of Mechanical and Aerospace Engineering, Ames, IA, USA
Abstract
Highlights
[1] F. D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, A new view on transformation induced plasticity (TRIP), Int J Plast, 16 (2000) 723-748.
[2] V. I. Levitas, Continuum mechanical fundamentals of mechanochemistry, In: Ed. Y. Gogotsi and V. Domnich, High Pressure Surface Science and Engineering. Section 3, Institute of Physics Publishing, 159-292, 2004.
[3] V. I. Levitas, High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments, Phys Rev B, 70 (2004) 184118.
[4] G. B. Olson, M. Cohen, Dislocation theory of martensitic transformations, In: Ed. F R N. Nabarro, Dislocations in solids, Amsterdam, North-Holland, 297-407, 1998.
[5] V. I. Levitas, Structural changes without stable intermediate state in inelastic material. Parts I and II, Int. J. Plast, 16 (2000) 805-849 and 851-892.
[6] A. V. Idesman, V. I. Levitas, E. Stein, Structural changes in elastoplastic materials: a unified finite element approach for phase transformation, twinning and fracture, Int. J. Plast, 16 (2008) 893-949.
[7] Y. Wang, A. G. Khachaturyan, Multi-scale phase field approach to martensitic transformations, Mater Sci Eng A, 438&440 (2006) 55-63.
[8] J. Kundin, D. Raabe, H. Emmerich, A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite, J Mech Phys Solids, 59 (2011) 2082-2102.
[9] V. I. Levitas, M. Javanbakht, Advanced phase field approach to dislocation evolution, Phys Rev B, 86 (2012) 140101.
[10] V. I. Levitas, Phase-field theory for martensitic phase transformations at large strains, Int J Plast, 49 (2013) 85- 118.
[11] V. I. Levitas, M. Javanbakht, Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms, Nanoscale, 6 (2014) 162- 166.
[12] V. I. Levitas, M. Javanbakht, Phase field approach to interaction of phase transformation and dislocation evolution, Appl Phys Lett, 102 (2013) 251904.
[13] Y. U. Wang, Y. M. Jin, A. M. Cuitino, A. G. Khachaturyan, Application of phase field microelasticity theory of phase transformations to dislocation dynamics: model and three-dimensional simulations in a single crystal, Philos Mag, 81 (2001) 385-393.
[14] V. I. Levitas, M. Javanbakht, Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface, Phys Rev Lett, 105 (2011) 165701.
[15] V. I. Levitas, M. Javanbakht, Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy, Int J Mat Res, 102 (2011) 652-665.
[16] V. I. Levitas, Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech Phys Solids, 70 (2014) 154-189.
[17] V. I. Levitas, M. Javanbakht, Surface-induced phase transformations: multiple scale and mechanics effects and morphological transitions, Phys Rev Lett, 107 (2011) 175701.
[18] M. Javanbakht, V. I. Levitas, Interaction between phase transformations and dislocations at the nanoscale. Part 2: Phase field simulation examples, J Mech Phys Solids, 82 (2015) 164-185.
Keywords