Document Type : Research Article
Authors
Mechanical Engineering Department, Razi University, Kermanshah, Iran
Abstract
Highlights
[1] H. Dyja, M. Pietrzyk, On the theory of the process of hot rolling of bimetal plate and sheet, Journal of mechanical working technology, 8(4) (1983) 309-325.
[2] B. Avitzur, C. Van Tyne, S. Turczyn, The prevention of central bursts during rolling, Journal of Engineering for Industry, 110(2) (1988) 173-178.
[3] H. Takuda, N. Hatta, H. Lippmann, J. Kokado, Upper-bound approach to plane strain strip rolling with free deformation zones, Ingenieur-Archiv, 59(4) (1989) 274- 284.
[4] S. Turczyn, M. Pietrzyk, The effect of deformation zone geometry on internal defects arising in plane strain rolling, Journal of Materials Processing Technology, 32(1-2) (1992) 509-518.
[5] R. Prakash, P. Dixit, G. Lal, Steady-state plane-strain cold rolling of a strain-hardening material, Journal of materials processing technology, 52(2-4) (1995) 338- 358.
[6] S. Turczyn, The effect of the roll-gap shape factor on internal defects in rolling, Journal of materials processing technology, 60(1-4) (1996) 275-282.
[7] P. Martins, M. Barata Marques, Upper bound analysis of plane strain rolling using a flow function and the weighted residuals method, International journal for numerical methods in engineering, 44(11) (1999) 1671- 1683.
[8] A.N. Doğruoğlu, On constructing kinematically admissible velocity fields in cold sheet rolling, Journal of Materials Processing Technology, 110(3) (2001) 287- 299.
[9] S. Ghosh, M. Li, D. Gardiner, A computational and experimental study of cold rolling of aluminum alloys with edge cracking, Journal of manufacturing science and engineering, 126(1) (2004) 74-82.
[10] S.A. Rajak, N.V. Reddy, Prediction of internal defects in plane strain rolling, Journal of materials processing technology, 159(3) (2005) 409-417.
[11] S. Serajzadeh, Y. Mahmoodkhani, A combined upper bound and finite element model for prediction of velocity and temperature fields during hot rolling process, International Journal of Mechanical Sciences, 50(9) (2008) 1423-1431.
[12] W. Deng, D.-w. Zhao, X.-m. Qin, L.-x. Du, X.-h. Gao, G.-d. Wang, Simulation of central crack closing behavior during ultra-heavy plate rolling, Computational Materials Science, 47(2) (2009) 439-447.
[13] R. Mišičko, T. Kvačkaj, M. Vlado, L. Gulová, M. Lupták, J. Bidulská, Defects simulation of rolling strip, Materials Engineering, 16(3) (2009) 7-12.
[14] M. Bagheripoor, H. Bisadi, Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process, Applied Mathematical Modelling, 37(7) (2013) 4593-4607.
[15] T.-S. Cao, C. Bobadilla, P. Montmitonnet, P.-O. Bouchard, A comparative study of three ductile damage approaches for fracture prediction in cold forming processes, Journal of Materials Processing Technology, 216 (2015) 385-404.
[16] H. Haghighat, P. Saadati, An upper bound analysis of rolling process of non-bonded sandwich sheets, Transactions of Nonferrous Metals Society of China, 25(5) (2015) 1605-1613.
[17] H. Haghighat, P. Saadati, An upper bound analysis of rolling process of non-bonded sandwich sheets, Transactions of Nonferrous Metals Society of China, 25(5) (2015) 1605-1613.
[18] Y.-M. Liu, G.-S. Ma, D.-W. Zhao, D.-H. Zhang, Analysis of hot strip rolling using exponent velocity field and MY criterion, International Journal of Mechanical Sciences, 98 (2015) 126-131.
[19] J. Sun, Y.-M. Liu, Y.-K. Hu, Q.-L. Wang, D.-H. Zhang, D.-W. Zhao, Application of hyperbolic sine velocity field for the analysis of tandem cold rolling, International Journal of Mechanical Sciences, 108 (2016) 166-173.
[20] S. Dwivedi, R. Rana, A. Rana, S. Rajpurohit, R. Purohit, Investigation of Damage in Small Deformation in Hot Rolling Process Using FEM, Materials Today: Proceedings, 4(2) (2017) 2360-2372.
Keywords