[1] S. A. Kalogirou, Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3) (2004) 31-95.
[2] M. Ansari, M. Bazargan, Optimization of Heat transfer and Pressure Drop in a Solar Air Heater with Ribbed Surface. Amirkabir Journal of Mechanical Engineering, 49(1) (2017) 137-146.
[3] Z. Poolaei Moziraji, A. Azimi, S. Kazemzadeh Hannani, M. Najafi, Simultaneous Estimation of Thermophysical Properties and Convective Boundary Conditions of a Sample Room in Tehran Using Inverse Analysis. Amirkabir Journal of Mechanical Engineering, 49(1) (2017) 147-160.
[4] H. Jahani, A. Abbassi, M. Kalteh, M. Azimifar, Semi-Analytic Solution of Nanofluid and Magnetic Field Effects on Heat Transfer from a Porous Wall. Amirkabir Journal of Mechanical Engineering, 49(1) (2017) 161-170.
[5] H. Khorasanizadeh, A. Aghaei, H. Ehteram, A. Azimi, Study and Exergy Optimization of a Flat Plate Solar Collector in a Closed Circuit Utilized with Reflectors and Lenses Using Experimental Results. Journal of Energy Engineering Management, 3(1) (2013) 40-51.
[6] M. A. Leon, S. Kumar, Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors. Solar Energy, 81 (2007) 62-75.
[7] S. Motahar, A. A. Alemrajabi, An analysis of unglazed transpired solar collectors based on exergetic performance criteria. International Journal of Thermodynamics, 13(4) (2010) 153-160.
[8] C. F. Kutscher, C. B. Christensen, G. M. Barker, Unglazed transpired solar collectors: heat loss theory. Journal of Solar Energy Engineering, 115 (1993) 182-188.
[9] C. Yildiz, I. T. Torgrul, C. Sarsilmaz, D. Pehlivan, Thermal efficiency of an air solar collector with extended absorption surface and increased convection. International Communication in Heat and Mass Transfer, 29(6) (2002) 831-840.
[10] P. T. Tsilingiris, Heat transfer analysis of low thermal conductivity solar energy absorbers. Applied Thermal Engineering, 20 (2000) 1297-1314.
[11] N. M. Khattab, Evaluation of perforated plate solar air heater. International Journal of Solar Energy, 21 (2000) 45-62.
[12] D. Njomo, M. Daguenet, Sensitivity analysis of thermal performances of flat plate solar air heaters. Heat and Mass Transfer, 42 (2006) 1065-1081.
[13] A. Sarreshtedari, A. Zamani Aghaee, Investigation of the thermo-hydraulic behavior of the fluid flow over a square ribbed channel. Journal of Heat and Mass Transfer Research, 1(2) (2014) 101-106.
[14] Z. Baniamerian, R. Mehdipour, F. Kargar, A numerical investigation on aerodynamic coefficients of solar troughs considering terrain effects and vortex shedding. International Journal of Engineering (IJE), Transactions C: Aspects, 28(6) (2015) 940-948.
[15] B. M. Ziapour, F. Rahimi, Numerical study of natural convection heat transfer in a horizontal wavy absorber solar collector based on the second law analysis. International Journal of Engineering (IJE), Transactions A: Basics, 29(1) (2016) 109-117.
[16] K. Ajay, L. Kundan, Performance evaluation of nanofluid (Al2O3/H2O–C2H6O2) based parabolic solar collector using both experimental and CFD techniques. International Journal of Engineering (IJE), Transactions A: Basics, 29(4) (2016) 572-580.
[17] I. Luminosu, L. Fara, Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. Energy, 30(12) (2005) 731-747.
[18] E. Shojaeizadeh, F. Veysi, Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector. Applied Thermal Engineering, 98 (2016) 1116-1129.
[19] Z. Said, R. Saidur, N. A. Rahim, Energy and exergy analysis of a flat plate solar collector using different sizes of aluminum oxide based nanofluid. Journal of Cleaner Production, 133 (2016) 518-530.
[20] S. M. Vanaki, H. A. Mohammed, A. Abdollahi, M. A. Wahid, Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. Journal of Molecular Liquids, 196 (2014) 32-42.
[21] D. D. Gray, A. Giorgini, The validity of the Boussinesq approximation for liquids and gases. International Journal of Heat and Mass Transfer, 19(5) (1976) 545-551.
[22] A. Bejan, Convection heat transfer. Wiley-Interscience (1984).
[23] ANSYS Fluent-Solver Theory Guide, Release 14.0 (2011) 351-353.
[24] J. A. Duffie, W. A. Beckman, Solar engineering of thermal processes. New York, John Wiley & Son (2006).
[25] Mechanical Agitator Power Requirements for Liquid, www.pdhonline.com/courses/k103/k103content.pdf
[26] A. Suzuki, General theory of exergy balance analysis and application to solar collectors. Energy, 13(2) (1988) 123-160.
[27] A. Bejan, D. W. Keary, F. Kreith, Second law analysis and synthesis of solar collector systems. Journal of Solar Energy Engineering, 103(1) (1981) 23-28.
[28] A. Bejan, 1Advanced Engineering Thermo-dynamics. New York, Wiley Inter science (1988).
[29] K. K. Dutta Gupta, S. Saha, Energy analysis of solar thermal collectors. Renewable energy and environment, 33(1) (1990) 283-287.
[30] A. Kahrobaian, H. Malekmohammadi, Exergy optimization applied to linear parabolic solar collectors. Journal of Faculty of Engineering, 42(1) (2008) 131-144.
[31] A. A. Abbasian Arani, S. Sadripour, S. Kermani, Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength. International Journal of Mechanical Sciences, 128–129 (2017) 550-563.
[32] S. Sadripour, M. Adibi, G. A. Sheikhzadeh, Two Different Viewpoints about using Aerosol-Carbon Nanofluid in Corrugated Solar Collectors: Thermal-Hydraulic Performance and Heating Performance, Global Journal of Researches in Engineering A: Mechanical and Mechanics, 17(5) (2017) 19-36.
[33] H. Khorasanizadeh, S. Sadripour, A. Aghaei, Numerical Investigation of Thermo-Hydraulic Characteristics of Corrugated Air-Heater Solar Collectors, Modares Mechanical Engineering, 16(13) (2016) 42-46.