[1] Bartolemei, G. G., Chanturiya, V. M., 1969. “Experimental study of true void fraction when boiling subcooled water in vertical tubes”. Teploenergeika 1969, 14(2), pp. 123-
128.
[2] Hoyer, N., “Calculation of dryout and post-dryout heat transfer for tube geometry”. Int. J. Multiphase Flow 1998; 24: 319-334.
[3] Krepper, E., Koncar, B., Egorov, Y., 2006. “CFD modeling of subcooled boiling-Concept, validation and application to fuel assembly design”. Forschungszentrum Rossendorf e.V.(FZR) 2006; Institute of safety research, Germany.
[4] Li, H., Vasquez, S. A., Punekar, H., et al. “Prediction of Boiling and Critical Heat Flux Using an Eulerian Multiphase Boiling Model”. Proceedings of the ASME 2010, International Mechanical Engineering Congress & Exposition 2010, canada.
[5] Li, H., Punekar, H., Vasquez, S. A., and Muralikrishnan, R., 2010. “Prediction of Boiling and Critical Heat Flux using an Eulerian Multiphase Boiling Model”. Proceedings of the ASME 2010, International Mechanical Engineering Congress & Exposition, Colorado,USA.
[6] Corcione, M., “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids”. Energy Convers. Manage. 2011; 52(1): 789-793.
[7] Heyhat, M. M., Kowsary, F., Rashidi, A. M., et al. “Experimental investigation of laminar convective heat transfer and pressure dropof water-based Al2O3 nanofluids in fully developed flow regime”. Exp. Therm Fluid Sci 2013; 44: 483–489.
[8] Prajapati, O. S. and Rohatgi, N., 2014. “Flow Boiling Heat Transfer Enhancement by using ZnO-Water Nanofluids”. Science and Technology of Nuclear Installations, 2014.
[9] Atf A, Rabiee A (2014) Enhancement of two phase flow boiling heat transfer in water/Al2O3 nanofluid, 2nd International Conference of Oil, Gas and Petrochemical, Tehran, Iran, December 2014.
[10] Abedinia E, Zareia T, Rajabniab H, Kalbasic R, Afrandc M. 2017. Numerical investigation of vapor volume fraction in subcooled flow boiling of a nanofluid, Journal of Molecular Liuids, vol.238, pp. 281-289.
[11] Shima, P., Philip, J., and Raj, B., 2009. “Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids”. Appl. Phys. Lett. 2009; 94 (22), 223101–223101-3.
[12] Evans, W., Fish, J., and Keblinski, P., 2006. “Role of Brownian motion hydrodynamics on nanofluid thermal conductivity”. Appl. Phys. Lett. 2006; 88 (9): 093116–093116-3.
[13] Kurul, N., and Podowski, M. Z., 1991. “On the modeling of multidimensional effects in boiling channels”. In: Proceedings of the 27th National Heat Transfer Conference, Minneapolis, Minnesota, USA, July 1991.
[14] Valle, V. H. D., and Kenning, D. B. R., 1985. “Subcooled flow boiling at high heat flux”. Int. J. Heat Mass Transfer, 28: 1907-1920.
[15] Cole, R., 1960. “A photographic study of pool boiling in the region of the critical heat flux”. AICHE J.; 6: 533-542.
[16] Lemmert, M., and Chawla, J. M., 1977. “Influence of flow velocity on surface boiling heat transfer coefficient”. Heat Transfer in Boiling, pp. 237-247.
[17] Kocamustafaogullari, G., and Ishii, M., 1995. “Foundation of the interfacial area transport equation and its closure relations”. Int. J. Heat Mass Transfer, 38(3), pp. 481-493,.
[18] Tolubinski, V. I., and Kostanchuk, D. M., 1970. “Vapor bubbles growth rate and heat transfer intensity at subcooled water boiling”. In: 4th International Heat Transfer Conference, Paris, France, 1970.
[19] Kocamustafaogullari, G., and Ishii, M., 1983. “Interfacial area and nucleation site density in boiling systems”. Int. J. Heat Mass Transfer, 26(9), pp. 1377-1387.
[20] Ioilev, A., et al. “Advances in the modeling of cladding heat transfer and critical heat flux in boiling water reactor fuel assembly”, 2007. NURETH-12, Pittsburgh, Pennsylvania, USA.
[21] Tentner, A., Lo., S., Loilev, A., Melnikov, V., Samigulin, M., Ustinenko, V., Kozlov, V., “Advances in computational fluid dynamics modeling of two-phase flow in a boiling water reactor fuel assembly”, 2006. Proceedings of ICONE14, Int. Conf. on Nuclear Engineering, July 17-20, Miami, Florida.
[22] Akbari, M., Galanis, N., Behzadmehr, A., 2012. “Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection”. Int. J. Heat Fluid Flow, vol. 37, pp. 136–146.
[23] Rabiee, A., Atf, A. “3-D numerical investigation of water/CuO nanofluid critical heat flux phenomenon in a PWR core channel during LOCA”, Progress in Nuclear Energy, 2015
[24] Rabiee, A., Atf, A. “A numerical assessment of copper oxide and alumina nanoparticles during CHF occurrence”, Progress in Nuclear Energy, 2015