[1] International Energy Agency (IEA), Key World Energy Statistics, OECD, Paris, 2016.
[2] J. Mahmoudimehr, L. Loghmani, Optimal management of a solar power plant equipped with a thermal energy storage system by using Dynamic Programming method, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 230 (2) (2016) 219-233.
[3] N. Papanikolaou, I. Wierzba, The effects of burner geometry and fuel composition on the stability of a jet diffusion flame, Journal of Energy Resources Technology, 119 (4) (1997) 265-270.
[4] A. Sobiesiak, J.C. Wenzell, Characteristics and structure of inverse flames of natural gas, Proceedings of the Combustion Institute, 30 (1) (2005) 743-749.
[5] L.K. Sze, C.S. Cheung, C.W. Leung, Appearance, temperature and NOx emission of two inverse diffusion flames with different port design, Combustion and Flame, 144 (1) (2006) 237–248.
[6] P. Hariharan, C. Periasamy, S.R. Gollahalli, Effect of elliptic burner geometry and air equivalence ratio on the nitric oxide emissions from turbulent hydrogen flames, International Journal of Hydrogen Energy, 32 (8) (2007) 1095–1102.
[7] U. Makmool, S. Jugjai, S. Tia, P. Vallikul, B. Fungtammasan, Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand, Energy, 32 (10) (2007) 1986–1995.
[8] F. Liu, G.J. Smallwood, Control of the structure and sooting characteristics of a co-flow laminar methane/air diffusion flame using a central air jet: an experimental and numerical study, Proceedings of the Combustion Institute, 33 (1) (2011) 1063–1070.
[9] L.L. Dong, C.S. Cheung, C.W. Leung, Combustion optimization of a port-array inverse diffusion flame jet, Energy, 36 (5) (2011) 2834-2846.
[10] L.L. Dong, C.S. Cheung, C.W. Leung, Heat transfer optimization of an impinging port-array inverse diffusion flame jet, Energy, 49 (1) (2013) 182-192.
[11] L.L. Dong, C.S. Cheung, C.W. Leung, Characterization of impingement region from an impinging inverse diffusion flame jet, International Journal of Heat and Mass Transfer, 56 (1-2) (2013) 360–369.
[12] H.S. Zhen, Y.S. Choy, C.W. Leung, C.S. Cheung, Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner, Applied Energy, 88 (9) (2011) 2917–2924.
[13] O.A. Kashkousha, M.M. Kamal, A.M. Abdulaziz, M.A. Nosier, Concentric elliptical jet diffusion flames with co- and cross-flows, Experimental Thermal and Fluid Science, 41 (2012) 177–187.
[14] S. Mahesh, D.P. Mishra, Effects of recessed air jet on turbulent compressed natural gas inverse diffusion flame shape and luminosity, Combustion, Explosion and Shock Waves, 48 (6) (2012) 683–688.
[15] S. Mahesh, D.P. Mishra, Flame stability limits and near blowout characteristics of CNG inverse jet flame, Fuel, 153 (2015) 267–275.
[16] S. Lamige, J. Min, C. Galizzi, F. André, F. Baillot, D. Escudié, K.M. Lyons, On preheating and dilution effects in non-premixed jet flame stabilization, Combustion and Flame, 160 (6) (2013) 1102–1111.
[17] H.S. Zhen, C.W. Leung, T.T. Wong, Improvement of domestic cooking flames by utilizing swirling flows, Fuel, 119 (1) (2014) 153–156.
[18] M. Saediamiri, M. Birouk, J.A. Kozinski, On the stability of a turbulent non-premixed biogas flame: Effect of low swirl strength, Combustion and Flame, 161 (5) (2014) 1326–1336.
[19] M. Akbarzadeh, M. Birouk, Liftoff of a Co-Flowing Non-Premixed Turbulent Methane Flame: Effect of the Fuel Nozzle Orifice Geometry, Flow, Turbulence and Combustion, 92 (4) (2014) 903–929.
[20] M. Saediamiri, M. Birouk, J.A. Kozinski, Enhancing the Stability Limits of Biogas Non-Premixed Flame, Combustion Science and Technology, 188 (11-12) (2016) 2077-2104.
[21] P. Kuntikana, S.V. Prabhu, Thermal investigations on methane-air premixed flame jets of multi-port burners, Energy, 123 (2017) 218-228.
[22] I. Bonefacic, I. Wolf, P. Blecich, Improvement of fuel oil spray combustion inside a 7 MW industrial furnace: A numerical study, Applied Thermal Engineering,110 (2017) 795–804.
[23] C.K. Law, Combustion Physics, Cambridge University Press, New York, 2006.
[24] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[25] B.F. Magnussen, B.H. Hjertager, On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion, Proceedings of the 16th symposium (international) on combustion, (1976) 719–729.
[26] H.C. Hottel, A.F. Sarofim, Radiative Transfer, McGraw-Hill, New York, 1967.
[27] R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, Taylor and Francis, Washington, 1992.
[28] J. Warnatz, U. Mass, R.W. Dibble, Combustion, Springer, Berlin, 2006.
[29] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[30] D. Garréton, O. Simonin, Aerodynamics of steady state combustion chambers and furnaces, ASCF. Ercoftac Cfd Workshop, Org: EDF Chatou, France, 1994.
[31] F. Hajabdollahi, Z. Hajabdollahi, H. Hajabdollahi, Soft computing based multi-objective optimization of steam cycle power plant using NSGA-II and ANN, Applied Soft Computing 12 (11) (2012) 3648-3655.
[32] K. Deb, Multi objective optimization using evolutionary algorithms, Wiley, New York, 2001.
[33] C.A. Coello, G.B. Lamont, D.A.Van Veldhuizen, Evolutionary algorithms for solving multi-objective problems, Springer, New York, 2002.