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ABSTRACT: In this study, a novel design paradigm is presented to obtain some geometry-related electrochemical 
and physical properties of an infiltrated SOFC electrode. A range of digitally realized microstructures with different 
backbone geometric properties and virtual electro-catalyst particle loadings under various deposition conditions 
are generated. Triple Phase Boundary (TPB), the active surface density of particles and gas transport factor are 
evaluated in those realized models based on selected infiltration strategy. Based on this database, a neural network 
is trained to relate the desired range of input geometric parameters to a property hull. The effect of porosity and 
geometric anisotropy in backbones in addition to the loading, distribution and aggregation behavior of particles is 
systematically investigated on those performance indicators. The results indicated that microstructures with very 
high amount of TPB and contact surface density of particle have a relatively low gas diffusion factor, meanwhile 
increasing these parameters does not involve  a sensible contradiction. Also, by adding particles, the TPB density 
variation is changed as a function of backbone porosity and the average shape of aggregated particles. A direct search 
into the microstructure and property hull is applied to find the best parameters in modeling approach aiming the 
maximum effective geometric properties. Finally, a genetic algorithm is employed to detect appropriate geometric 
factors getting the maximum acquirable performance in infiltrated SOFC electrodes.
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1- Introduction
Growing demands for energy has attracted international 
research efforts and led them to the cleaner energy sources. 
Research on the fuel cell, as a sustainable energy source, has 
shown high interest and generated considerable expectations 
over the last decades [1, 2]. These devices allow for the 
efficient transformation of fuel into electrical power and 
eliminate CO2 emissions by converting H2 as fuel to water 
as by-product. Solid Oxide Fuel Cells (SOFCs) are among 
the most efficient devices for direct conversion of fuels into 
electrical energy with the minimal environmental impact [3]. 
Performance and durability of an SOFC electrode are directly 
related to the geometric characteristics of its microstructure 
[4,5]. Improving microstructural properties such as Triple 
Phase Boundaries (TPBs) and effective transport pathways 
directly promote the electrochemical reactions and reactant 
movement. Thus, it should be understood to develop 
optimum electrodes with a higher performance [6]. The 
recent development of more sophisticated microstructural 
characterization tools has now enabled researchers to explore 
microstructure of SOFC by investigating the complex 
interplay between gas and solid phases and their relationship to 
performance [5]. Direct imaging of three-dimensional SOFC 
electrode microstructure with focused ion beam scanning 
electron microscopy (FIB-SEM) and X-ray computed 
tomography (XCT) now could be used to obtain quantitative 
measures such as TPB length and tortuosity factor [7]. In 
addition to the experimentation, a numerical simulation can 

be employed to obtain a detailed 3D insight into how SOFC 
electrodes function. The modeling efforts have led us to a 
better understanding of local phenomena taking place at the 
microstructure scales, for instance, local potential distribution 
inside the electrode and its effect on reaction kinetics and 
physical properties such as ionic or electronic conductivities, 
and, therefore, to further improve electrode performance 
and reliability [5,8]. These morphological parameters 
sometimes have inconsistent and nonlinear behaviors such 
that a small increase in one may result in a detrimental effect 
on others. For example, the tortuosity of pathways within 
each phase directly affects the transport to and from TPBs 
[9]. To overcome these complications, Joen et al. [10] first 
introduced a micro scale model for the microstructure and 
performed a numerical optimization on the microstructure of 
the anode supported SOFC. In particular, they investigated 
the dependence of the electrochemical reaction and the mass 
transport on the particle size and thickness of the functional 
layers of the electrode and reported that a smaller particle size 
for cathode functional layers enhances the electrochemical 
performance and deteriorates mass transport efficiency 
simultaneously. Based on these findings, the thickness of the 
cathode functional layers should be reduced in accordance 
with the particle size to maintain the mass transport resistance 
in the same level. 
Nanostructured materials such as infiltrated electrodes are 
the key to enhance fuel cell performance. These fuel cells 
are usually made of a backbone microstructure with particles 
deposited on them by infiltrating/impregnating methods. 
Designing optimal microstructures and achieving them by 
controlling the material and manufacturing process, and 
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maintaining the optimum microstructure during the fuel cell 
operation are problems that attract many research works. 
Because of the effects of microstructure geometry on the 
physical or electrochemical properties of electrodes and their 
interactions, a geometric model can be useful to predict these 
phenomena.  More recently, a nanostructured electrode made 
by infiltration techniques has been the center of attention in the 
SOFC research community. Easier control of composition and 
particle sizes are the major reasons for the better performance 
of infiltrated electrode than conventional electrodes. In this 
process, the porous structure (scaffold) is first fabricated on 
top of the dense electrolyte and then another solid phase is 
introduced in the form of particles that leads to a significant 
boost in the TPB density for the electrode microstructure. 
A summary of the history and the latest developments in 
infiltration techniques for this application can be found in 
[11, 12]. 
Thanks to the recent progress in micro/nano-imaging and 
characterization methods accompanied by  introducing  
more advanced computational techniques that have made 
it possible to simulate the nanostructured electrodes. For 
instance, Zhang et al. [4] developed a model to construct a 3D 
microstructure of infiltrated SOFC electrodes. In their study, 
the generation of backbone microstructure has been carried 
by randomly dropping spherical particles on the surface of 
backbone.  Based on this geometric model, they have reported 
the geometric properties of the electrode, including the 
percolation threshold of infiltrated nanoparticles and pores, 
TPB length, nanoparticles surface area, backbone surface area 
and interfacial area between the backbone and nanoparticles. 
They have also systematically reported the effects of particle 
size, backbone porosity, infiltrated particle size and its 
aggregation risk. In another work, Zhang et al. [13] have 
developed a model for the dual-phase infiltration procedure. 
Bertei et al. [14] have developed a numerically reconstructed 
model for infiltrated electrodes by employing a sedimentation 
algorithm for the backbone generation and a novel Monte-
Carlo packing algorithm for the random infiltration. Their 
study shows that the electrodes made by infiltration may 
show up to two orders of magnitude increase in TPB density 
compared to conventional composite electrodes. Synodis et 
al. [15] have presented a mechanistic model to predict both 
the percolation threshold and effective conductivity of the 
infiltrated SOFC electrodes. In this study, model predictions 
are compared to two separate published experimental 
studies and it is shown that effective conductivities and 
percolation thresholds can be varied by infiltrating particle 
size, pore size, and porosity. To predict the dependence of 
effective electronic conductivity and active TPB length on 
experimentally controllable and measurable parameters, 
Hardjo et al. [16] have developed an effective property model 
for infiltrated electrodes. They presented a methodology to 
relate an experimentally observed degradation in the effective 
electronic conductivity of infiltrated electrodes to a reduction 
in active TPB length as a function of time. A mechanistic 
model to predict the active TPB density, in combination with 
an effective conductivity of infiltrated SOFC electrodes is 
presented by Reszka et al. [17]. That study shows that the 
scaffold/infiltrate size ratio has the greatest impact on the 
TPB density, followed by the porosity and pore/infiltrate 
size ratio. Their model provides an insight over the rational 
design of infiltrated electrodes and conforms well to the 

experiment. Recently Kishimoto et al. [6] have studied 
the 3D microstructure of nickel-infiltrated gadolinium-
doped ceria Ni /GDC electrodes using focused ion beam 
tomography by quantifying microstructural parameters of 
the actual electrode microstructure such as volume fraction, 
TPB density and mean particle/pore sizes. A comparison 
between the infiltrated electrodes and conventional electrodes 
indicates that the infiltrated electrodes have a greater potential 
to independently control metal particle size, porosity and 
TPB density, which is a significant advantage in developing 
optimal electrode microstructures. In addition, they have 
developed a one-dimensional numerical model to investigate 
the effect of the microstructural parameters on the effective 
transport coefficients and electrochemical reaction rate of the 
electrode [6, 18].
Investigation of complex input/output relationships in this 
kind of electrochemical devices needs an effective modeling 
method such as  Artificial Neural Networks (ANNs). These 
networks like the human brain consist of a number of neurons 
with different transfer functions to correlate the multi input/
output parameters in engineering problems [19-21]. Marra et 
al. [22] have used a neural network to estimate the SOFC 
performance. Also, Bozorgmehri et al. [23] have  employed 
ANN and a Genetic Algorithm (GA) to model the effect 
of constructive parameters (anode porosity, electrolyte 
thickness, electrode support/functional layer thickness) of 
a single SOFC power density. Among the different types 
of ANNs, some researchers such as Saengrung et al. [24] 
investigated the performance of a commercial Proton 
Exchange Membrane (PEM) fuel cell system with the Back-
Propagation Neural Network (BPNN) as a useful tool to quite 
satisfactory control of the output parameters based on the 
variations of input data. The performance of this method is 
determined by varying error goals, the number of neurons, 
the number of layers and training algorithms. 
All of those geometric modeling studies have restricted their 
investigation in specific regions especially in determining the 
geometric properties of backbone and aggregation behavior of 
particles. To solve this problem, we presented a comprehensive 
framework in the current study to couple a new geometric 
modeling approach with the artificial intelligence approach. At 
first, a set of 3D microstructures with different porosities and 
geometric anisotropies are realized as backbones following a 
controlled Monte-Carlo method. Then, particles in the form 
of single voxels are added to the microstructures using a novel 
algorithm to simulate the various aggregation behaviors of 
infiltrating particles on the backbones. This process consisted  
of preliminary seeding and controlled deposition of particles. 
Unlike the above-mentioned modeling methods, in this 
study, the average geometry of particles on the surface of the 
scaffold can be controlled in addition to the particle loading. 
Controlling the distribution and agglomeration of particles on 
the scaffold have created new opportunities in our geometric 
design. In this paper, not only the TPB density and active 
surface area of particles were evaluated as the same as 
the other; but also the gas transport factor is evaluated by 
converting the realized microstructures to geometric models. 
In addition to those innovative methods in modeling and 
characterization procedure, since the realization of different 
electrode microstructures are so time-consuming and their 
characterization is a complex process; there is a need to 
develop a tool to estimate the effective properties of assumed 
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microstructures. It can be a practical solution to determine the 
limitation of microstructure properties and their interactions 
to create a general function to correlate the constructive 
parameters to those properties and perform an optimization 
process. Therefore, all of the input and output geometric 
data in this research are used to train a neural network and 
generate a set of possible microstructures with different 
effective properties named property hull. This includes a 
comprehensive set of effective property values predicted by 
sweeping input parameters within their range. The neural 
network was coupled with some multi-objective optimization 
methods to have a powerful search engine to find the best 
electrode microstructure in different scenarios. Additionally, 
this method prepares a comprehensive assessment of 
interactions among different properties such as reaction site 
density, reactant gas diffusion and conductivity of structural 
phases. In this study, a simple direct search method and a multi-
objective genetic algorithm process are conducted to find the 
best microstructure on the base of different scenarios, which 
controls the most effective geometric-related electrochemical 
properties in the electrodes.

2- Microstructure Generation and Characterization
To achieve realistic microstructures, in this study we attempt 
to computationally replicate the real process of infiltrated 
electrode fabrication. In the first stage, a porous backbone 
microstructure will be generated based on the Monte-Carlo 
approach that is composed of three steps: i) generation, ii) 
distribution and iii) growth of the cells. In the first step, 
several initial seed cells are randomly placed in a unit cell 
of the electrode. Upon initial seed placement, the growth 
step starts following a cellular automation algorithm. This 
procedure continues till the desired volume fraction of each 
phase is achieved. From a different perspective, the growth 
step continues till all phases meet and fully occupy the 
grid. Penetration between the phases is avoided at all times 
throughout the initial distribution and growth of the cells 
[25]. This process can be controlled in different directions by 
adjusting axial or transversal grain growth rate with respect 
to the electrolyte. In Fig. 1 grain growth rate in backbones are 
adjusted to generate directional microstructures.

One of the most important aspects of this model is the 
size of the representative volume element (RVE) to obtain 
the microstructural behavior. To establish an applicable 
link between the RVE properties and full electrode model, 
statistical methods such as correlation function diagrams 
have been used in [26-28] to ensure the validity of results and 
the relationship between the size of RVE and voxelized space 
resolution. The line intercept method has been used to extract 
the average particle size of the solid phase in the backbone. 
Fortunately, it meets the criteria of a minimum number of 
particles (~7) should fit into the edge of RVE. In the following, 
to ensure the minimum number of voxels (~20) to divide 

those particles, the RVE size is selected to 150×150×150 
voxels. As a result, the average particle diameter of backbone 
microstructure would be in the range of 500-750 nm that is in 
the normal range of powder grading in SOFC materials also it 
corresponded to the range of 20-30 nm for the length of voxel 
edge Length (L) that would be the minimum size of  none 
agglomerated deposited particle.
After the generation and characterization of the backbone, as 
discussed in another study, particles will be added into the 
realized microstructures. Unlike the previously mentioned 
modeling approaches, which assumed the particles in the 
form of spheres or single cubic voxels, this proposed method 
can create a wide variety of geometric shapes on the surface 
of backbone electrode from aggregated particles. At first, 
a number of infiltrating particles, controlled by seeding 
ratio, were deposited on an active surface of backbone 
as preliminary seeds. This process can be accomplished 
completely randomly or as a function of some parameters 
such as backbone material or the surface geometry. In the 
next step, the rest of particles are deposited around the seeds. 
Depending on the modeling adjustments, agglomeration and 
dispersion of particles are controlled by the probability of 
particle deposition on the surface of pre-deposited seeds (low 
values of agglomeration rate) or on the backbone surface near  
the pre-deposited seeds (high values of agglomeration rate).

The modeling parameters such as seeding and agglomeration 
ratio can be extracted from the position of voxels in digitized 
interior space of virtual skullcaps with different heights, 
contact diameters, and angles. These parameters might 
be extracted from digitized 2D cross section images with 
enough resolution to detect the average shape and amount 
of deposited particles phase on the surface of backbone. A 
sample of realized infiltrated microstructures with very low 
(1%) and high (20%) loading of particles is shown in Fig. 2.

Fig. 1. 3D realized backbones with different geometric 
anisotropies (Axial grain growth rate -normal to the 

electrolyte-is reduced from left to right)

Fig. 2. 3D realized virtual infiltrated microstructures with 1% 
particle loading (left) and 20% volumetric loading (right)
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When the realization of the models is completed, a wide 
range of geometric characteristics can be evaluated from the 
models. To narrow down the scope of this study, the most 
effective geometric parameters should be determined based 
on the material characteristics of electrode backbone and 
particles. Generally, there are three strategies in infiltration; 
in the first one, the backbone is made of electronically 
conductor material and the particles are made of ion 
conductor materials. The second strategy is vice versa, the 
scaffold is made of ion conductor material and the particles 
are electronically conductor. In these strategies, the most 
important reaction sites are TBBs and can be considered as a 
performance indicator, provide that the ionic conductivity is 
enough to transport the ions of the electrochemical reactions 
[29]. In the third strategy, the backbone is made of Mixed 
Ionic Electric Conductor (MIEC) material and a small part 
of electrochemical reactions can occur on Double Phase 
Boundaries (DPB) on the contact surface of scaffold and gas 
routes. In this kind of electrodes depending on the backbone 
material, the infiltrate particles can be made of electronically 
conductor material to elevated electrical conductivity or 
ionic conductor material to enhance the ionic conductivity 
of microstructure. In addition to this, they can be also made 
of the MIEC materials to raise the reaction sites on the 
contact surface of the electrode with reactant gases. However 
recently a large number of researchers have added highly 
electrochemically active materials (like Pd, Ru,...) to these 
electrodes to enhance the oxygen reduction on the surface of 
backbones via spillover mechanism. They could alleviate the 
polarization resistance by increasing the electrochemically 
active surface density of electrode. [11, 30-32]. Based on these 
findings, depending on the preferred strategy, the effective 
geometric properties for estimating the active density of 
electrochemical sites would be changed. In this study based 
on the third strategy, active surface density of particles and 
their triple phase boundary with the scaffold and the gas 
routes were selected as the electrochemical performance 
indicators.  In addition to the abundance and effectiveness 
of reaction sites, the diffusivity of reactant gas is another 
important parameter especially in high current densities or 
high temperature working conditions. It can be a rate limiting 
phenomena in the electrode and a large number of TPBs and 
higher ionic conductivity cannot compensate the limitation of 
the gas diffusions in the performance of the cell [18]. Other 
important parameters such as  ionic conductivity of backbone 
as well as the electric conductivity of deposited particles could 
be evaluated in this model, but it is assumed that they are not 
in a range which can affect the electrochemical performance 
significantly especially in the last infiltration strategy. As a 
result, the target function should be extracted from the role 
of materials in the microstructure based on the infiltration 
strategy. The in-process parameters such as temperature and 
current density are non-geometric parameters to determine 
the importance of each variable in that function.

• TPB density
As many studies report, like Janardhanan [1] , the density of 
active TPBs, where the ionic and electric conductor meets 
each other in reactant gas routes, plays a major role in the 
overall microstructure of the SOFCs and significantly affects 
the efficiency of the SOFC. As this  interfaces between the 
phases, they play an essential role in the electrochemical 

performance of electrode [1]. In this study, we have updated 
the method of Cronin [2, 3] to calculate the TPB density using 
new acceptable neighborhood image patterns in virtually 
infiltrated microstructures.

• Contact surface density of particles
In addition to TPB calculation, some research works have 
suggested that double phase boundaries between deposited 
particles and active reactant gas routes can play an important 
role in electrochemical reactions especially highly active 
electrochemical particles on the surface of MIEC backbones 
[4, 5]. The implemented algorithm is started with the 
identification of all active contact surfaces on the backbone. 
Then the active surfaces of deposited particles as well as 
other contact surfaces between different phases are calculated 
by sorting special columns in identification matrix of realized 
microstructures.

• Gas transport factor
Another effective parameter in the performance of 
SOFC electrodes is the gas diffusion, especially in high 
current densities or high temperatures. Important factors 
characterizing the gas diffusion in porous media are the 
porosity and tortuosity of the gas routes [6]. Due to its 
simplicity, Fick’s law is commonly adopted to assess gas 
diffusion. For porous media, Fick’s first law can be modified 
by introducing porous media factors as

eff
ij ijD Dφ

τ
= (1)

Where Di,j is binary diffusivity of the gas species, Di,j is the 
effective binary diffusivity of the gas species, and φ and τ 
are the porosity and tortuosity, respectively. In this research, 
tortuosity is obtained from the effective thermal conductivity 
using Avizo XlabTM, EFI Corporation, For this purpose,  the 
thermal conductivity of the pore network, Keff is obtained 
by performing a thermal simulation and the tortuosity is 
calculated based on

bulk

eff

K
K

τ ε= (2)

where we assume Kbulk=1.
As discussed by Zhao et al. [7], whenever the molecular 
distance of a gas is in the order of average pore size, the 
Knudsen diffusion should be directly considered. In the 
current study, this effect is neglected due to different orders 
of calculated average pore size (300–500 nm) in realized 
backbones. However the Knudsen diffusion can also affect 
the gas diffusivity but to simplify the optimization scheme, 
the gas transport factor is defined regardless of the average 
pore size and  estimated in the porous electrodes by this 
equation:

GasTrasportFactor ε
τ

= (3)

• Microstructure Hull
In traditional design, material and geometry are usually 
varied iteratively to meet the design requirements. A more 
efficient approach to design requires simultaneous material 
and geometry optimization. Following this approach for the 
design of material, a microstructure hull is needed which 

eff
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consists of a set of possible microstructures existing within a 
region characterized by certain distribution functions obtained 
from the microstructure. In other words, a closure in this 
sense includes all possible effective property values predicted 
by sweeping input parameters defining these distribution 
functions, and generally, a solution is a subset of this closure. 
In the current study, it is assumed that if two points are 
chosen in the property space, they correspond to two points 
in the geometry space that are connected with a continuous 
path in both spaces. Although this may be judged as an over 
simplistic approach, it allows us to demonstrate the concepts. 
Let us select TPB density, contact surface density, and gas 
diffusivity as critical design objectives. Mathematically 
speaking, a property closure for these parameters can be 
obtained using an arbitrary analytical or approximate method 
and their boundaries represent constraints for the optimization 
process [39, 40].

3- Methodology
In this study, the realization of 3D backbone models are 
carried out by choosing a number of virtual microstructures 
with the porosity within the range of 26-64% and different 
combination of grain growth rate in the range of 0.001-0.999 
on transversal and axial direction to the electrolyte with 
the same nucleation rate (0.01). The volumetric loading of 
particles is changed in the range of 1-25% volumetric loading. 
The seeding ratio that controls the distribution of particles 
on the surface of backbone is changed in the range of 2.5-
25% of the particle. The seeding behavior, which controls the 
deposition probability of seed on the surface of backbone is 
set in two levels, free seeding or being a function of contact 
surface density on backbones. At last, agglomeration ratio is 
changed from 20-80% to simulate the aggregation of particles 
on the surface of the scaffold. Fig. 3 shows a small part of a 
3D-realized microstructure.

Following these input specifications and their combinations, 
among the feasible combination of these parameters, 194 
different microstructures are realized and then characterized 
in regard to their properties as reported in Table 1. All of 
these geometric parameters such as TPB and contact surface 
densities are evaluated directly from the mathematical model, 
but the tortuosity is evaluated from the 3D realized models.
Among these output parameters, the exact values of TPB 

density, contact surface density of particles and instead of 
tortuosity, gas diffusion factor along with input parameters 
are selected to train a neural network as shown in Fig. 4. 
It can be used to predict the properties of the each virtual 
microstructure for a given set of input parameters. In the 
current study, the extrapolation in input and output parameters 
is limited carefully to account for the complex behavior of 
fuel cells. Because of the regressive nature of the problem, 
a BPNN based on five inputs (backbone porosity, particle 
loading, seeding factor, seeding type and surface coverage 
behavior) and three normalized outputs (TPB Density, particle 
contact surface density and gas diffusion factor) is used from 
the Neural Network Toolbox provided in MATLABTM.
This model consists of an input layer, a hidden layer with 20 

neurons with tansig transfer function and an output layer with 
three neurons with a linear transfer function. Seventy percent 
of data was dedicated for neural network training using the 
Levenberg Marquardt algorithm and the reminded data was 
used to test and validate the model. The Mean Square Error 
(MSE) and the regression for the validation data are obtained 
8.2E-5 and 0.98 in test data, respectively.

Fig. 3. A small part of realized microstructures (Backbone 
Porosity: 47% and volumetric loading: 5%)

Unit Min Max Variation

TPB density L µm-2 0.018 0.207 0.189

contact surface density 
of particles

 L µm-1 0.026 0.421 0.396

contact surface density 
of backbone

L µm-1 0.037 0.371 0.335

contact surface density 
of backbone and 

particles

L µm-1 0.009 0.256 0.247

contact surface density 
between particles

L µm-1 0.022 0.898 0.877

pore phase tortuosity - 1.242 7.864 6.623

average pore size L nm 0.049 0.232 0.183

average particle size L nm 0.006 0.020 0.013

Table 1. The range of output geometric variables in realized 
models (L=assumed length of voxel edge in nm)

Fig. 4. The input and output parameters in the neural network 
structure to predict geometric properties of microstructures
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• Optimization Scheme
When a neural network model is trained properly, it can be 
used as a practical tool to predict the output parameters in 
terms of input variables. In other words, it would be possible 
to correlate the microstructure hull to property closure by 
sweeping feasible input variables in an acceptable range. 
A well-trained neural network can simulate the overall 
relationship between the microstructure and its properties 
within a limited range of input parameters. But due to complex 
behavior of fuel cell, this range should not be exceeded much, 
the previously reported input parameters to avoid improper 
extrapolation of data. In this way, as shown in Fig. 5, porosity, 
transversal and axial growth rate are divided into five levels 
in the ranges in backbones. Also, particle loading, seeding 
ratio, and agglomeration ratio are divided again into five 
levels and seeding type is considered in a free or confined 
method in virtual infiltration process. 
A combination of these parameters are used to create a large 
number of hypothetical microstructures (~31250) to obtain 
a property hull using the pre-trained neural network and 
proposed a range of parameters in microstructure hull as 
listed in Table 2. This process enables researchers to predict 
the variation of output parameters in some specific domains 
that there is not any data to analyze and provide a search 
engine to use further optimization techniques.
Based on these input parameters, the properties of each 
microstructure are predicted by the neural network. Among 
these models, 10780 microstructures were in the range of 
acceptable properties with allowable positive values. The 
maximum and minimum property values and their range 
of variation are shown in Table 2. Based on the obtained 
properties, it is clear that the gas diffusion factor and particle 
contact surface density are almost 1.8 and 1.2 times more 
sensitive to the geometry than the TPB density regarding 
our assumptions. A sample property closure obtained from 
the predefined input parameters is shown in Fig. 6. Each axis 
represents one of the properties and its feasible range within 
the selected design space.
Based on the preferred electrochemical and physical 
properties of the microstructure, which resulted in the highest 

electrochemical sites or highest reactant gas transport, only 
a limited number of these microstructures can be chosen. 
The region of interest in the hull can be distinguished 
from the property closure by setting a target function. This 
target function is a linear (or nonlinear) combination of the 
microstructure properties that can be extracted from the 
role of materials and the rate-limiting reactions in the real 
microstructure in the operational condition. 
From a different viewpoint, the objective function can 
be illustrated by a free-form surface in 3D space of the 
microstructure hull that separates the desirable microstructures 
from the rejected ones. For example, if the objective function 
considered being polynomial, the critical boundary is in the 
form of a flat plane that intercepts each 3D axis based on 
the coefficient of each variable in the objective function. The 
intersection between that plane and the microstructure hull 
is a border for decision making that divides the accepted or 

Min Max Variation

Input 
parameters

Backbone porosity 0.2 0.72 0.52
Axial grain growth 

rate 0.001 0.921 0.998

Transversal grain 
growth rate 0.001 0.921 0.998

Loading of particles 0.01 0.222 0.212
Seeding ratio 0.01 0.222 0.212
Seeding type 0 1 -

Surface 
agglomeration ratio 0.2 0.8 0.6

Output 
parameters

TPB density
(L µm-2) 0 0.4662 0.4662

Contact surface 
density of particles 

(L µm-1)
0 0.5696 0.5696

Gas diffusion factor 0 0.8690 0.8690

Table 2. The range of Input and output parameters in the 
microstructure and property hull

Fig. 5. Schematic diagram showing the process of geometric property prediction and optimization 
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rejected microstructures. The enclosed space between the 
microstructure hull boundaries and objective function plane 
contains the appropriate microstructures. If there is not any 
overlap between these restricted spaces, it means that the 
microstructure with preferred properties does not exist due 
to the geometric limitation. If there is an overlapping area, 
an optimization method such as genetic algorithm can be 
used to explore the corresponding inputs parameters of these 
optimum microstructures. In GA, an initial population (50) 

of potential solutions will be randomly generated then the 
fitness function values will be determined and those solutions 
will be proportionally ranked. The new parent population will 
be selected among the highly ranked solutions. Some genetic 
operators such as crossover and mutation also will be used 
to combine parents and random change in new generations, 
up to meeting stopping criteria (reaching 100 generation or 
function tolerance of 1e-4). In this study, these processes are 
performed by the neural network Toolbox combined with the 
genetic algorithm multi-objective optimization Toolbox in 
MATLABTM software.

4- Results and Discussion
Based on our assumptions in effective geometric properties, 
an ideal microstructure should have the highest active 
electrochemical sites (TPB & contact surface density of 
catalyst particles) and the maximum gas transport factor. 
Also, depending on the working condition of the electrode, 
the priority of these parameters might be varied and a 
combination of these parameters can be more useful to 
identify the best microstructures. Thus, a property closure 
should be detected based on different microstructures within 
the microstructure hull. To clarify this concept, in Fig. 7 
microstructure properties are mutually compared when the 
third parameter is specified with color. As shown in Fig. 
7a, and Fig. 7b, microstructures with the highest amount of 
reaction sites (TPBL or particle surface density) have a lower 

Fig. 6. Feasible Microstructures in property hull (each axis 
represents one of the desirable properties)

Fig. 7. Microstructure property closure comparing gas transport factor with surface density of particles (a) and TPB density (b). The 
surface density of microstructures with the full range (c) and feasible microstructures in high range of gas transport factor (d) 
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gas transport capability and may restrict the performance in 
some cases. A comparison between TPB density and particle 
surface density for hypothetical microstructures is shown in 
Fig. 7c. Several microstructures with the high amount of TPB 
density and particle surface density exist and there is not any 
inconsistency between these properties in the microstructure 
but as shown by blue points, these microstructures have a 
very low amount of diffusion factor. Based on these figures, a 
microstructure with a very high amount of both reaction sites 
and gas diffusion factor is not available. But a high amount of 
TPB density and contact surface density of catalyst particles, 
regardless of gas diffusion, are feasible as shown in Fig. 7c. 
To find a way to choose the best microstructure, a desirable 
level of gas transport factor can be considered. For example, 
if the acceptable amount of gas transport factor is set more 
than 0.3 (like a microstructure with the porosity of 50% and 

pore phase tortuosity less than 1.6), feasible TPB and particle 
surface density range of microstructures can be observed in 
Fig. 7d. The microstructures are located in the circle have 
the most obtainable reaction sites and acceptable level of gas 
diffusion.
In addition to discover the upper and lower bounds of feasible 
properties for a specific range of microstructures, it is possible 
to establish a relationship between the microstructure 
geometric properties and constructive variables of realized 
models (backbone porosity, directional growth rates, particle 
loading, seeding and agglomeration ratio of particles). For 
instance, Fig. 9 illustrates the variation of TPB density 
against the backbone porosity and particle volumetric 
loading; meanwhile, the other parameters are set fixed. It 
can be observed that TPB density has a maximum point by 
changing the particle loading. As shown in Fig. 8, there is a 

Fig. 8. TPB density in different virtually infiltrated microstructures with various loadings and backbone porosity 

Fig. 9. TPB density variation related to particle loading and agglomeration ratio of particles 
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maximum point for TPB density when the particle loading 
and backbone porosity are changed in proposed ranges. Also, 
the backbone porosity determines the variation behavior of 
TPB density by adding particles. In other words, very high 
or low level of backbone porosity constrains the maximum 
achievable TPB density even in the high amounts of particle 
loading.
The average shape of aggregated particles may play an 
important role in final geometric parameters of realized 
models. For example, as demonstrated in Fig. 9, TPB density 
was investigated in different microstructures by varying 
amount of loading and agglomeration ratio. TPB density 
varied in completely different trends when the particles are 
agglomerated over the seeds or dispersed on the surface of 
backbone around the primary seeds. In  other words, when 
added particles aggregate over the seeds (in agglomerated 
positions), the maximum TPB density can be achieved in 
maximum loading, but when they are aggregated around the 
seeds in contact with the scaffold (in dispersed positions), 
there should be an optimum point for particle loading. As a 
result, the overall shape of infiltrated particles is an important 
factor in determining electrochemical site density in addition 
to particle loading.
The next goal of the current study is finding the optimal 
microstructure properties and their corresponding input 
constructive parameters. A simple approach is adopted here 
by defining a normal polynomial objective function based on 
the given performance indicators such as:

Objective function =W1 × (TPB density) +W2 × (Surface 
density of particles) +W3 × (Gas transport factor) (4)

In this equation, the selected geometric properties have 
a weighting factor (W1-3) based on their roles in the 
performance of the electrode. Adjusting the role of each 
characterized property is a complicated task especially in 
electrochemical devices such as fuel cells whereas they 
depend on some external issues.
As discussed before the intrinsic property of constructive 
material, working condition (temperature, pressure & 
current density) and fuel and oxidant gas composition are the 
effective items in determining the impact factor of geometric 
properties [8,9]. For example in conventional electrodes. 
which consist of separate electrons and ion conductor phases, 
the rate of electrochemical reactions and power generation are 
directly related to TPB density. In infiltrated microstructures, 
as described before, it depends on the infiltration strategy. 
For example, if the backbone was made of ion conductor 
martial, the particles should be made of electrons conductor 
phase to create reaction sites at their interfaces with backbone 
and gas routes [1]. In this case, the TPB density can play the 
major role via increasing W1 in that polynomial function. 
On  the other hand, if the backbone was made of mixed ionic 
electric conductor material, in addition to TBP, the contact 
surface density of electrode and infiltrated particles could  
have different effects on the rate of electrochemical reactions 
based on the catalytic activity of that material [10]. In this 
case, W2 can be considered as a critical parameter in the 
overall efficiency of the electrode. In addition to the density 
of reaction site, varying temperature and current density can 
change the rate limiting item [11]. To consider this state, 
W3 would determine the impact of reactant gas diffusion 
capability in electrode performance.

Generally, determining these weighting factors requires a 
comprehensive knowledge and is beyond the scope of the 
current study because of the intense discussion in that context. 
To simplify the optimization problem, five different scenarios 
over the normalized values of properties is designed. As 
shown in Table 3, the weighting factors are changed in those 
scenarios to determine the most effective parameters based on 
different assumptions in material roles or working conditions.

The objective function of these scenarios in combination 
with the proposed neural network model can directly search 
the microstructure hull to find the best obtainable properties 
for infiltrated electrodes. Table 4 reports the optimum 
constructive parameters of realized microstructures as well as 
their corresponding geometric properties based on different 
scenarios using direct search method in the property hull.

The results indicate that if the maximum active reaction site 
is considered as the target function (scenarios 1, 2 and 4), 
the best parameters in microstructures can be 46% backbone 
porosity, minimum amount of directional growth rates, 22% 
volumetric particle loading, 17% volumetric controlled 
loading of seeds and the agglomeration ratio of 65%. In 
the third scenario, which is designed to maximize only gas 
transport factor, the highest level of backbone porosity and 
free seeding ratio are needed. The axial growth rate should 
set significantly more than the transversal grain growth 
rate and particle loading should be considered around 17%. 

scenario Effective factor(s) W1 W2 W3

1 TPB density 1 0 0

2 Surface density of particles 0 1 0

3 Gas diffusion factor 0 0 1

4 TPB density  and surface 
density of particles 1 1 0

5
TPB density, surface density 
of particles and gas diffusion 

factor
1 1 1

Table 3. Different optimization scenarios

scenario 1 2 3 4 5

Micro-
structural 

parameters

backbone porosity 0.46 0.46 0.72 0.46 0.46

Axial grain growth 
rate

0.001 0.001 0.231 0.001 0.001

Transversal grain 
growth rate

0.001 0.001 0.001 0.001 0.001

Loading 0.222 0.222 0.169 0.222 0.222

Seeding 0.169 0.169 0.222 0.169 0.116

Seeding behavior 1 1 0 1 1

Agglomeration 
ratio

0.65 0.65 0.65 0.65 0.8

Geometric 
property

TPB Density 0.466 0.466 0.043 0.466 0.403

surface density of 
Particle

0.569 0.569 0.228 0.569 0.515

Gas transport 
factor

0.060 0.060 0.869 0.060 0.316

Table 4. The optimum microstructure based on direct search 
method in the microstructure and property hull
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The fifth scenario is a combination of all output parameters 
in a weighted way to maximize the reaction sites and gas 
diffusivity simultaneously. In this way, the microstructure 
properties are approximately similar to first and second 
scenarios.

Whereas the direct search method can only search among the 
realized microstructures, there are more efficient approaches 
to find optimal microstructure using metaheuristic 
optimization algorithms such as genetic algorithm. To use 
the multi-objective genetic algorithm search method, an 
objective function is designed based on one of the above-
mentioned scenarios. At first, the above-mentioned objective 
function should be converted to a fitness cost function by 
performing an inversion on the value (or the sign). Then to 
avoid impracticable extrapolation, a search domain should be 
defined to limit the input variable into the proposed ranges. 
Using multi-objective GA, in each generation of the process 
an optimal microstructure can be obtained. Table 5 reports one 
of these microstructures that meets the criteria of variation 
limits in the optimization algorithm under fourth scenario 
(maximizing the TPB and particle surface density). The 
total amount of TPB and surface density of particles, which 
is proposed as the target function, is higher in the proposed 
microstructure in GA method. It can be an interesting point 
that in that model, the gas transport factor is also improved in 
addition to reaction sites.

5- Conclusion
Microstructural attribution of conventional and infiltrated 
electrodes can significantly alter the performance of an 
SOFC device. The density of active electrochemical 
sites (TBPs and DPBs) along with the gas diffusivity of 
reactant gases into the microstructure is the main factors to 
determine the electrochemical performance of electrodes. 
Although in some cases the backbone ionic conductivity 
or electronic conductivity of particles can be rate limiting 
in an electrochemical process, in this study to simplify the 
optimization process, those are considered in an acceptable 
range. These parameters are linked with the backbone 
microstructure properties and the infiltration parameters 
such as loading, distribution of particles on the backbone 

and their agglomeration behavior. In this study, a number of 
3D microstructure (more than 190) were realized by varying 
the porosity and directional behavior of grain in backbones, 
in addition to particle loading and deposition parameters to 
cover a wide range of possible configurations of infiltrated 
microstructures. An in-house algorithm was developed to 
calculate TPB and DPB density of particles. Furthermore,  the 
stack of virtual cross-section images was used to evaluate the 
mass transport factor in the microstructures. A combination 
of input and output parameters was suggested to train a neural 
network. A microstructure hull was developed, containing a 
large number (~10780) of hypothetical microstructures, to 
obtain the property closure of all possible microstructure for a 
range of input geometric parameters and further optimization 
goals. It was observed that for the microstructures with a 
very high amount of TPB and surface density of infiltrated 
particles, a relatively low gas diffusion factor should be 
expected meanwhile increasing those parameters does not 
involve sensible contradiction. Also, it was observed that the 
backbone porosity determines the variation behavior of TPB 
density by adding particles. In addition to this, the maximum 
TPB density is achieved in maximum loading, when they are 
aggregated around the seeds in contact with the scaffold. In 
other words, adding particles cannot elevate the reaction sites 
and the overall shape of infiltrated particles determines is 
significantly effective in this process.
Finally, to find the best microstructure, a simple direct 
search scheme was used to find the optimal microstructure 
parameters among the members of microstructure hull with 
different scenarios. Then, an artificial neural network coupled 
with GA optimization scheme was developed to search the 
design space to find the best feasible geometric properties 
for an infiltrated electrode based on an optimization scenario. 
Although the results strongly depended on the definition of 
the objective function in different scenarios, the proposed 
method deemed useful to determine the limitation of available 
performance in experimental works and complicated 
interactions among microstructural parameters. This 
modeling approach if combined with enough experimental 
data and artificial intelligence can enable researchers to 
match the best materials and manufacturing process to get 
the maximum performance and durability in solid oxide fuel 
cell electrodes.
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