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ABSTRACT: In layered structures, the interface of layers is not always perfect and the analysis of 
problems which have imperfect interfaces is of the high level of importance. In this paper, an analytical 
approach is used to study the behavior of a layered functionally graded spherical vessel under thermal 
and mechanical loadings at the inner and outer surfaces. The interfaces of the layers in the vessel are 
considered to be imperfect and a viscoelastic layer of negligible thickness is assumed between any 
two layers. The behavior of these viscoelastic layers is modeled by means of Kelvin-Voigt model. In 
order to solve the problem, the governing equations of each layer are extracted via the thermoelasticity 
theory and by applying the appropriate boundary conditions at the interface of the layers, the overall 
displacement and stress fields are found in the vessel and numerical results are presented for different 
parameters. The obtained results show that the stiffness of the viscoelastic layer affects the value of the 
displacements and the stresses as well as the stabilization time of the system. However, changing the 
damping parameter of the Kelvin-Voigt model only changes the stabilization time and not the values of 
the displacements and stresses.

Review History:

Received: 2 January 2016
Revised: 27 March 2016
Accepted: 16 August 2016
Available Online: 8 November 2016

Keywords:

Spherical vessel
Functionally graded material
Viscoelastic interface
Mechanical loading
Thermal loading

75

1- Introduction
Spherical vessels are one of the most widely used structures 
in a variety of industries, where these structures, depending 
on their function, are subjected to different types of loadings. 
. On the other hand, one way to improve the structural 
thermo-mechanical behavior of the spherical vessels is to 
take advantage of the concept of layer-wise Functionally 
Graded Materials (FGMs); where the combination of the 
FGMs excellent endurance against thermal and mechanical 
loadings and the simplicity of the layered structures, turns the 
resulted structure into an exceptional one.
Regarding this fact, many researchers have focused on the 
thermo-mechanical behavior of these structures and also 
the impact of various parameters on their behavior. Noda 
[1] has investigated the thermal stresses in the temperature-
dependent materials. Lutz and Zimmerman [2] have presented 
an exact solution for a uniform heated spherical object 
whose elastic modulus and heat conduction coefficient vary 
linearly with radius. By employing the infinitesimal theory of 
elasticity, Tutuncu and Ozturk [3] have presented the closed-
form solutions for stresses and displacements in functionally 
graded cylindrical and spherical vessels which are subjected 
to internal pressure. You et al. [4] have investigated the 
internally pressurized thick-walled spherical pressure 
vessels, using elastic analysis. In their work, two kinds of 
pressure vessels have been considered; one  consists of two 
homogeneous layers at the inner and outer surfaces of the 

vessel  connected with a functionally graded layer, while the 
other  consists  of  only the functionally graded material. In 
their study, they have proposed a method to obtain an almost 
constant circumferential stress in the vessels consisting of 
functionally graded materials. Eslami et al. [5] have presented 
an analytical general solution for the one-dimensional steady-
state thermal and mechanical stresses in thick-walled spheres 
made of functionally graded materials. Poultangari et al. 
[6] have developed an analytical method to obtain the two-
dimensional steady-state thermal and mechanical stresses in 
FG thick-walled spheres. Akis [7] has investigated the purely 
elastic, partially plastic and fully plastic stress states in 
internally pressurized functionally graded spherical pressure 
vessels in the framework of small deformation theory; where 
the basis of the plastic model is considered to be Tresca’s yield 
criterion and ideal plastic material behavior. Tutuncu and 
Temel [8] determined the axisymmetric displacements and 
stresses in functionally graded hollow cylinders, disks, and 
spheres subjected to uniform internal pressure by means of 
plane elasticity theory and complementary functions method. 
In their research, arbitrary material properties distribution is 
assumed. This assumption yields a two-point boundary value 
problem with a governing differential equation of variable 
coefficients. General analytical solutions of such equations 
are not available; however, the employed complementary 
functions method reduces the boundary value problem to an 
initial value problem which can accurately be solved by one 
of many efficient methods, such as the Runge-Kutta method. 
Jabbari et al. [9] have presented a general solution for one-
dimensional steady-state thermal and mechanical stresses in 
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a hollow thick-walled porous FG sphere which is subjected 
to thermal and mechanical boundary conditions on the 
inner and outer surfaces and an arbitrary radial temperature 
function. Nejad et al. [10] have presented exact closed-form 
solutions for stresses and the displacements in thick-walled 
FG spherical shells. In their paper, they have analyzed the 
same problem by means of finite element method as well. 
Bayat et al. [11] have studied a thermo-mechanical elasticity 
problem of an FG hollow sphere subjected to mechanical 
loads and one-dimensional steady-state heat transfer. They 
implemented the effect of material properties distribution in 
the sphere by assigning a dimensionless parameter, whose 
value characterizes the non-homogeneity. 
As  can be seen, the analytical determination of displacement 
and stress fields in FG and layered spheres has been 
widely studied in the literature. However, one of the most 
important points that must be considered in the analysis of 
these structures is the perfectness of the bonding between 
different layers. This fact has categorized the problems of 
this kind into problems with perfect and imperfect interfaces. 
If the bonding of the layers is considered to be perfect and 
flawless, the displacement field is continuous throughout the 
medium as well as the interfaces. This assumption simplifies 
the governing equations and enables the researchers to 
obtain analytical solutions for the stress and displacement 
fields. Nevertheless, in functional and actual structures, 
perfect bonding of layers is almost not attainable due to 
manufacturing processes. The behavior of these kinds of 
interfaces that are called imperfect interfaces should be 
considered in the displacement and stress analysis of the 
FG medium, since in these  problems the displacement field 
will no longer be continuous at the interfaces. There are a 
number of models which take into account the presence of 
these discontinuities into the formulation of the governing 
equations by considering an interlayer of negligible thickness 
among other layers of the structure. One of the simplest 
models in determining the behavior of this interlayer is the 
linear spring model that is used widely by many researchers. 
In this model, the interlayer is simulated as a spring whose 
displacement is directly relevant  to its applied load by a 
stiffness factor of that layer. Another model that is also used 
is the viscose model in which the interlayer is considered 
as a damper. This means that even under static loads, the 
response of the structure will be time-dependent [12-18]. The 
third approach is to consider the interlayer as a viscoelastic 
layer whose  behavior is a combination of the two previously 
mentioned models. The viscoelastic model can also be 
utilized in modeling the high-temperature loading conditions. 
Thus, the viscoelastic model may be used in investigating 
creep and stress relaxation problems [19, 20].
In all of the above-mentioned studies, the bonding between the 
layers is assumed to be perfect and flawless. However, some 
researchers have studied imperfect bonding of layers, as well. 
Hen and Jiang [21] have studied the time-dependent response 
of a simply supported layered FG strip with the viscoelastic 
interface of layers under bending. Their results showed that 
the behavior of the structure is significantly time-dependent. 
Chen and Lee [22] have presented a semi-analytical solution 
to study simply supported composite laminates with viscous 
interfaces.  Based on the findings of this research, as the 
time approaches infinity, the viscous layer completely loses 
its ability to transfer shear stress. Yan and Chen [23] have 

analyzed the same structure but with considering viscoelastic 
rather than viscous interfaces. They have utilized the Kelvin–
Voigt relation to characterize the constitutive behavior of 
the interfaces. Their findings showed that unlike the viscous 
interfaces, viscoelastic interfaces can transfer the shear 
stresses even when the time approaches infinity. The model 
proposed by He and Jiang [21] is similar to the method  
presented by Pagano et al. [24-26] for laminated composite 
and sandwich beams and plates, where He and Jiang [21] 
have extended the mentioned method by adding an extra step 
to solve a first-order ordinary differential equation which 
describes the time-dependent behavior of the interfacial 
sliding displacement of the iscoelastic interfaces. However, 
He and Jiang’s method, as well as Pagano’s solution, needs a 
large amount of computational capacity when the number of 
layers is increased. In order to overcome this dilemma, Chen 
et al. [27] employed the state-space solution technique, with a 
combination of power series expansion method. They studied 
the response of a simply supported orthotropic laminate 
with viscous interfaces. Chen et al. [28] also investigated 
the same structure by means of state-space and Taylor series 
expansion methods. By improving and extending the Chen 
and Lee’s method [22], Chen et al. [29] investigated the 
three-dimensional bending problem of a simply supported 
cross-ply cylindrical laminate with viscous interfaces. The 
time-dependent behavior of a simply supported laminated 
beam, containing two piezoelectric layers at the upper and 
lower surfaces, has been studied by Yan et al. [30-31], 
where state space has been employed. In this problem, the 
piezoelectric layers are  attached to the beam by means of 
viscoelastic interfaces whose behavior is characterized by the 
Kelvin-Voigt relation. Yan and Chen [32]  examined the same 
problem, but instead of the laminated beam, a functionally 
graded beam was considered. Wei et al. [33] have analyzed 
the three-dimensional bending problem of an orthotropic 
laminated plate with viscoelastic interfaces by using power 
series expansion and by considering the Kelvin-Voigt 
viscoelastic relation for the behavior of the interfaces. Yan et 
al. [34] have investigated the response of a simply supported 
cross-ply plate with viscoelastic interfaces, subjected 
to sinusoidal loading. In their study, a comprehensive 
comparison is made between the behavior of two structures 
with perfect and imperfect interfaces. Yan et al. [35] have 
studied the time-dependent bending response of a laminate 
plate which  consists of piezoelectric layers with viscoelastic 
interfaces. Alibeigloo [36] has studied the bending and free 
vibration behavior of a simply supported cylindrical panel  
consisting of homogeneous layers which are connected 
with viscoelastic interfaces. In this study, the Fourier series 
are utilized along the axial and circumferential directions 
and state space technique is used in the radial direction. 
Alibeigloo [37] has also investigated the three-dimensional 
static and vibration behavior of a laminated composite plate 
with viscoelastic interfaces under bending.
As reviewed above, the imperfect bonding between the 
layers is studied mostly in layered and graded beams and 
plates while there are few investigations conducted on the 
behavior of layered and graded cylindrical and spherical 
structures with imperfect bonding. However, these two latter 
are among the most important structures in industrial and 
practical applications, since all pressure vessels are produced 
in the form of cylindrical or spherical structures. Therefore, a 
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thorough study of the thermo-mechanical elasticity problem 
of such structures is needed in order to provide engineers 
with basic design tools.
In this paper, the steady-state thermo-mechanical elasticity 
problem of a functionally graded layered spherical pressure 
vessel with the imperfect bonding of layers is studied. The 
most general case is considered, where the material properties 
of each layer are assumed to be constant and the non-
homogeneity concept accompanied with functionally graded 
materials is implied via changing the material properties of 
each layer gradually in the radial direction. The bonding of 
the layers is assumed to be viscoelastic and the Kelvin-Voigt 
model is considered to define the interfacial behavior. If the 
bonding of the layers is assumed to be perfect, the problem 
reduces to the thermo-mechanical elasticity problem of a 
functionally graded sphere. In order to solve the problem, the 
sphere is considered to be initially under a constant heat flux 
at its inner surface. After the stabilization of the temperature 
gradient, mechanical pressure is applied to the inner and outer 
surfaces of the vessel. Therefore, in the first step of analyzing 
the problem, the temperature gradient is determined by 
solving the heat conduction equation and the displacement 
and stress fields are calculated according to this temperature 
gradient. Subsequently, the displacement and stress fields due 
to the mechanical loading are determined, and by using the 
superposing principle, total displacement and stress fields 
are found. In each step, the problem is solved analytically by 
solving the governing equations for each layer and applying 
the viscoelastic behavior of the interfaces as the boundary 
conditions. The effects of different parameters, such as time, 
mechanical pressure,  thermal loading and viscoelastic 
parameters on the response of the vessel are studied by  this 
method.

2- Solution method
The main goal of this research is to present a theoretical 
approach to investigate the behavior of a layered spherical 
vessel with viscoelastic interfaces between the layers, 
subjected to the thermo-mechanical loading.  Each layer 
is assumed to be homogeneous and isotropic and the 
viscoelastic interfaces are modeled by the Kelvin-Voigt 
method. Convection heat transfer at the inner and outer 
surfaces is considered as the thermal boundary conditions of 
the problem. By assuming infinite heat transfer coefficient, the 
constant temperature boundary conditions can be achieved, as 
well. The schematic of the problem geometry is demonstrated 
in Fig. 1, where the vessel is divided into N layers and Ej, αj, 
kj, hj and rj are the modulus of elasticity, coefficient of thermal 
expansion, thermal conductivity, thickness and the local 
radial coordinate of the j-th layer (j=1,…,N), respectively. In 
addition, Pin and Pout, hin and hout, T∞,in and T∞,out denote the 
inner and outer pressure, convection heat transfer coefficient 
and temperature.
In order to analyze the problem, it is assumed that the 
vessel is initially subjected to the thermal loading and after 
the stabilization of the thermal gradient, the mechanical 
pressure is applied. In order to do so and as the first stage, 
convection heat transfer is considered at the inner and outer 
surfaces of the vessel as the thermal boundary conditions 
and by solving one-dimensional heat conduction equation, 
the temperature gradient is obtained through the thickness of 
the vessel. Then, by solving the equilibrium equations and 

considering the viscoelastic interfaces, this gradient is related 
to the displacement and stress fields. In the  second step, the 
displacement and stress fields due to the internal pressure are 
obtained by solving the equations of equilibrium for each 
layer and applying the continuity boundary conditions at the 
interfaces of layers. The total displacement and stress fields 
are derived by means of the superposition principle.

2- 1- Thermal loading
Since the geometry is considered to be spherical and due to 
the symmetry, ∂⁄∂φ and ∂⁄∂θ vanish in the equations and the 
heat conduction equation for each layer in the steady-state is 
written as:

2
2

1 0, 1, ,
j

j j
j j j

d dTk r j N
r dr dr

 
= = …  

 
(1)

In this equation, Tj=Tj(rj) is the temperature at the j-th layer. 
Since each layer is considered to be homogeneous, the 
solution of Eq. (1) may be written as:

1
2 , 1, ,

j
j j

j

DT D j N
r

= + = … (2)

where D1
j and D2

j (j=1,…,N) are unknown coefficients  
obtained by applying the boundary conditions. In the present 
problem, the boundary conditions are the continuity of 
temperature and heat flux at the interfaces of the layers:

Fig. 1. The schematic of vessel geometry and the applied 
mechanical and thermal loads
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Furthermore, at the inner and outer surfaces of the vessel 
convection, heat transfer occurs with the ambient. Therefore, 
the thermal boundary conditions at the inner and outer 
surfaces can be written as:

( )( ) ( )
1

1
 1

1
in in in in

dTh T T r k r
dr∞ − = − (4)

( )( ) ( ) 

N
N

out out out N out
N

dTh T r T k r
dr∞− − = − (5)

In a general case, this problem contains two unknown 
coefficients in each layer, D1

j and D2
j (j=1,…,N); thus, for a 

structure with N layers, there will be 2N unknown coefficients 
at hand. On the other hand, repeating Eqs. (3a) and (3b) for 
(N-1) number of interfaces plus Eqs. (4) and (5), result in 
2N equations. These 2N equations and 2N unknowns form 
a linear set of equations whose solution gives D1

j and D2
j 

(j=1,…,N) for all layers.
At the next step, by using the obtained temperature distribution 
from the previous step, the displacement and thermal stress 
fields may be determined.  Due to the symmetry in both 
geometry and loading, the parameters will not change in 
the circumferential and meridian directions (∂⁄∂θ=∂⁄∂φ=0), 
the shear stresses are equal to zero (σrθ=σrφ=σθφ=0) and the 
hoop and meridian stresses are equal to each other (σθθ=σφφ). 
By considering these conditions, the equilibrium equations 
in the circumferential and meridian directions will be 
satisfied spontaneously. Since each layer is assumed to be 
homogeneous, the equilibrium equation in the radial direction 
of each layer can be derived as:

( )2 0
j

j jrr
rr

j jr r θθ
σ σ σ∂

+ − =
∂ (6)

The stress-strain relations for homogeneous material can be 
written as:

( ) 2rr rr rrGθθ ϕϕσ λ ε ε ε ε= + + + (7a)

( ) 2rr Gθθ θθ ϕϕ θθσ λ ε ε ε ε= + + + (7b)
where G is the shear modulus and λ is equal to:

( ) ( )( ) ( )/ 1 1 2 2 / 1 2E Gλ υ υ υ υ υ= + − = −   (8)
Due to the symmetry, uθ=uφ=0, and the strain-displacement 
relations in the spherical coordinates reduces to:

/rr ru r Tε α= ∂ ∂ − ∆ (9a)

/ru r Tϕϕ θθε ε α= = − ∆ (9b)

0r rθ ϕ θϕε ε ε= = = (9c)
By substituting Eq. (9) in Eq. (7), the stress components 
in each layer can be derived with respect to the radial 
displacement component as:

( ) 1 22
j j

j j j j jr r
rr

j j

u uG T
r r

σ λ δ δ
 ∂

= + + − ∆  ∂ 
(10a)

2

1

21j j j
j j jr r

j j

u u T
r rθθ

δσ λ
υ δ

 ∂
= + − ∆  ∂ 

(10b)

whereΔTj=ΔTj(rj) is the temperature difference between the 
temperature of each point (which is obtained from Eq. (2)) 
and the initial temperature, and δ1 and δ2

j are defined as:

( )1 2 / 1δ υ υ= − (11)

( ) ( )2 1 / 1j jδ υ α υ= + − (12)
By replacing Eq. (10) into Eq. (6) and using  Eq. (2), the 
equilibrium equation can be derived as a function of radial 
displacement component:

2

2 2 2

2 2 
j j j

r r

j j j j j

u u
r r r r r

β∂ ∂
+ − =

∂ ∂ (13)

where

( ) ( )11 / 1j j jDβ υ α υ= − + − (14)
The analytical solution of the Eq. (13) is:

2
1 2 / / 2j j j j

r j ju A r A r β= + − (15)
in whichA1

j and which A2
j are unknown coefficients that can 

be determined by applying the boundary conditions. Due to 
the presence of viscoelastic interfaces, the radial stress is 
continuous, while the displacement is not:

1 1

1   ,        1, , 1
j j

j j
rr rrr r

j Nσ σ
+ +

+= = … − (16a)

1 1

1 ,       1, , 1
j j

j j j
r rr r

u u j Nγ
+ +

+= + = … − (16b)

In this equation, γj denotes the displacement magnitude at the 
j-th interface and is related to the stress (at this interface) by 
employing the Kelvin-Voigt viscoelastic model as below:

0 1          1, , 1
j

j j j j
rr j N

t
γσ η γ η ∂

= + = … −
∂

(17)

In this equation, η0
j and η1

j are respectively the elastic and 
viscoelastic constants of the j-th interface. The above relation 
may be rewritten in the dimensionless form as:

0 1         1, , N 1
ô

j j
j j jrr

out

h j
E
σ γη γ η ∂

= + = … −
∂ (18)

in which

( )1
1/outE t hτ η= (19)

0 0 /j j
outh Eη η= (20)

1
1 1 1/j jη η η= (21)

where h denotes the total vessel thickness and Eout is the 
elastic modulus of the outer layer. Eq. (18) is a linear time-
dependent differential equation with constant coefficients. By 
solving this equation, γj c may be obtained as follows:

0

0 1

1
jj

j rr
j j

out

h exp
E

ησγ τ
η η

  
= − −     

(22)
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Based on this equation, γj can be determined at each moment 
and its value can  be substituted into Eq. (16b). By repeating 
Eqs. (16a) and (16b) in (N-1) interfaces, (2N-2) equations will 
be obtained. In addition, the radial stresses at the inner and 
outer surfaces are equal to the internal and external pressures, 
respectively. However, since at the first step only the thermal 
stresses are considered, the radial stresses at these surfaces 
are zero. By employing Eq. (10a), these two conditions can 
be expressed as:

1 1
1 1

1 2
1 1

0r ru u T
r r

δ δ
 ∂

+ − ∆ = ∂ 
(23)

2 2
2 2

1 2
2 2

0
N N

N Nr r

N N

u u T
r r

δ δ
+ +

+ +

+ +

 ∂
+ − ∆ = ∂ 

(24)

These two equations along with (2N-2) previous equations 
will result in 2N equations. Meanwhile, according to Eq. 
(15), there are two unknown coefficients for each layer (A1

j 
and A2

j). Therefore, for a number of N layers, there will be 
2N unknown coefficients at hand. This procedure creates a 
linear set of equations with 2N equations and 2N unknowns. 
The solution to this set of equations gives A1

j and A2
j for 

all layers. By determining these two coefficients, the stress 
and displacement fields can be obtained for each layer and 
consequently for the whole vessel.

2- 2- Mechanical loading
In the second step, the induced mechanical stress field,  
produced by the internal and external pressures is determined 
by taking into account the effects of the viscoelastic interfaces. 
The equation of equilibrium and the stress-strain relations are 
the same as Eqs. (6) and (7) that can be simplified as

/rr ru rε = ∂ ∂ (25a)

/ru rϕϕ θθε ε= = (25b)

0r rθ ϕ θϕε ε ε= = = (25c)
By substituting the above equations into the stress-strain 
relations of each layer, the stress components can be obtained 
as a function of radial displacement:

( ) 12
j j

j j j r r
rr

j j

u uG
r r

σ λ δ
 ∂

= + +  ∂ 
(26a)

1j j
j j r r

j j

u u
r rθθσ λ

υ
 ∂

= +  ∂ 
(25b)

Substituting Eq. (25) into Eq. (6) will present the equation of 
equilibrium for each layer as:

2

2 2

2 2 0
j j

r r

j j j j

u u
r r r r

∂ ∂
+ − =

∂ ∂ (27)

which solution is
2

1 2 /j j j
r j ju B r B r= + (28)

where, B1
j and B2

j are unknown coefficients and can be 
determined by means of boundary conditions. The interfacial 
boundary conditions are similar to the previous step and can 
be expressed as Eq. (16). However, the boundary conditions 
at the inner and outer surfaces are different from Eqs. (23) and 
(24); since the internal and the external pressures should be 

considered as the radial stresses at these surfaces, respectively. 
Thus, the boundary conditions at these two surfaces can be 
written as:

( )
1 1

1 1
1

1 1

2 r r
in

u uG P
r r

λ δ
 ∂

+ + = ∂ 
(29)

( )
2 2

2 2
1

2 2

2
N N

N N r r
out

N N

u uG P
r r

λ δ
+ +

+ +

+ +

 ∂
+ + = ∂ 

(30)

Repeating Eqs. (16a) and (16b) for (N-1) interfaces along 
with Eqs. (29) and (30) will produce 2N equations. On the 
other hand, there are two unknown coefficients for each 
layer that means a number of 2N unknown coefficients exist 
for the whole vessel. Therefore, there exist a linear set of 
2N equations with 2N unknowns. The solution to this set 
determines the displacement field from which the stress field 
may be calculated. The final displacement and stress fields are 
obtained by the summation of the corresponding thermal and 
mechanical fields. It should be mentioned that the equations 
are coded in MAPLE software and the results are acquired.

3- Results and Discussion
As there are almost no other studies  on the spherical vessels 
with viscoelastic interface of layers, a spherical vessel with 
perfect interfaces (in which the displacement is continuous in 
the interfaces and γj=0) is assumed to verify the developed 
solution method. In order to investigate the validity of the 
present model, an FG vessel with similar loading condition 
is employed which has been already studied by Eslami et 
al. [5]. They have considered the inner and outer radii of the 
FG vessel equal to 1 m and 1.2 m, respectively. Also, at the 
inner and outer surfaces, the temperature is 10 ºC and 0 ºC, 
respectively, and the internal pressure is assumed equal to 50 
MPa. The changes in the thermal and mechanical properties 
of the vessel are expressed by power law as:

n
inE E r= (31)

n
inrα α= (32)

where, Ein and αin denote the elastic modulus and thermal 
expansion coefficient of the inner surface and are assumed 
to be equal to 200 GPa and 1.2×10-6 1⁄K , respectively. Fig. 
2 shows a comparison between the obtained temperature 
distribution, displacement and radial stress by the present 
model and the results presented by Eslami et al. [5]. As can be 
seen in this figure, a good agreement is obtained between the 
mentioned results which shows the validity and accuracy of 
the present model. Here, again, it should be emphasized that 
the present model can also predict the thermo-mechanical 
behavior of a functionally graded spherical vessel with 
continuous variation of mechanical and thermal properties.
After verifying, the present model is used to investigate the 
effects of different parameters on the thermo-mechanical 
behavior of the spherical layered vessel with viscoelastic 
interfaces. In order to investigate the effects of several 
parameters, the spherical vessel is assumed to have ten 
homogeneous layers, varying from a ceramic inner layer to a 
metallic outer layer. Therefore, the spherical vessel contains 
ten homogeneous layers with imperfect viscoelastic interfaces 
between them. Table 1 lists the thermal and mechanical 
properties of the ceramic and metallic layers  used to produce 
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numerical results. The viscoelastic interfaces are assumed to 
be the same between each two adjacent layers. In addition, 
the thickness of these layers is assumed to be negligible 
and the thermo-mechanical properties are considered to be 
η0=0.05 and η1=1.

The inner and outer radii of the vessel are 1 m and 1.2 m, 
respectively. The initial temperature of the whole vessel is 
assumed to be 25 ºC. Heat convection is assumed at both inner 
and outer surfaces of the vessel where heat transfer coefficient 
is considered to be equal to 10 W/(m2.K); and the inner and 
outer fluid temperatures (T∞,in and T∞,out) are assumed to be 
150 ºC and 25 ºC, respectively. After the temperature reaches 
a steady-state condition, the vessel is subjected to an internal 
pressure of 50 MPa, while no external pressure is applied. 
Here, the effects of different parameters are discussed, while 
the other parameters are considered to be constant. In all 
of the following investigations, the radial displacement 
and stress are non-dimensionalized with respect to the total 
thickness and the internal pressure of the vessel, respectively.

3- 1- The effect of time
As mentioned earlier, the presence of the viscoelastic 
interfaces between the layers leads to a time-dependent 
response of the system, even under static loading conditions. 
Since the heat transfer equation is solved in the steady-state 
situation, the instantaneous temperature distribution cannot 
be obtained. Therefore, the problem is defined in a way that 
at first the vessel is subjected to the described thermal loading 
and after the temperature distribution in the vessel reaches 
a steady-state condition, the mechanical loading in the form 
of internal pressure is applied. After applying the internal 
pressure, the response of the system can be achieved at each 
time meaning that the time-dependent behavior of the vessel 
can be obtained.
Fig. 3 demonstrates the vessel time history response to the 
mechanical load. In this case, the thermal load is not inserted 
and only an internal pressure of 50 MPa is applied. As can 
be seen in Fig. 3a, due to the presence of the viscoelastic 
interfaces, the radial displacement varies with time. In  other 
words, right after the vessel is subjected to the internal 
pressure, its layers tend to expand; while the viscoelastic 
interfaces cannot be expanded in a synchronized manner. 
As  time goes on, this displacement reaches a stable state. 
In such a state, for τ>100 no changes occur in the diagrams. 
When the response of the system reaches the steady-state, 
the displacement discontinuity can be noticeably seen 
between any adjacent layers. Furthermore, the variation of 
radial stress versus time can be seen in Fig. 3b. In addition, 
it can be seen that in the beginning moment of inserting the 
internal pressure, the radial stress varies linearly through the 
thickness of the vessel, while it decreases  as  time passes and 
reaches the steady-state.

3- 2- The effect of internal pressure
Figs. 4 and 5 illustrate the time history of the response of the 
vessel subjected to an internal pressure of 5 MPa and 500 
MPa, respectively. In both these figures, the thermal loading is 
neglected in order to only investigate the effect of mechanical 
loading. By comparing these diagrams with  those  of Fig. 3, 
it can be concluded that the internal pressure variation does 
not affect the stabilization time of the system. In addition, 
it can be seen that the displacement and stress vary linearly 
versus the internal pressure. Thus, the non-dimensional stress 
(σrr /Pin ) has remained the same in all these three figures; but 
the non-dimensional displacement (u⁄h) varies linearly versus 
pressure.

Fig. 2. Comparison between the obtained results by the present 
model and the results of Eslami et al. [5]; (a) Temperature 

distribution through the vessel thickness, (b) Dimensionless 
displacement; (c) Dimensionless radial stress

(a)

(b)

(c)

_ _

Material α [10-6/K] k [W/m.K] E [GPa]
Steel (metallic component) 200 17 13.2

Glass coating (ceramic 
component) 70 1 0.65

Table 1. Thermal and mechanical properties of the ceramic and 
metallic layers
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3- 3- The effect of thermal loading
In this section, the internal pressure is assumed to be equal 
to zero, in order to study the effect of thermal loading. The 
results are presented for the steady-state conditions, where the 
temperature distribution has reached to its steady condition.
Fig. 6 demonstrates the temperature distribution through the 
wall of the vessel for different temperatures of the inner fluid, 
and Fig. 7 depicts the displacement and stress  due to this 
temperature distribution. As can be seen in these two figures, 
if the internal temperature is less than the initial temperature, 
the overall temperature decreases and the vessel tends to 
shrink. On the other hand, since the thermal expansion 
coefficient of the metal is higher than the ceramic (Table 
1), the outer metal richer layers have a greater tendency to 
shrink, and therefore  the inner layers will be compressed. If 

(a)

(b)
Fig. 3. The response of the system for the internal pressure of 
50 MPa with no thermal loading; (a) Non-dimensional radial 

displacement, (b) Non-dimensional radial stress

(a)

(b)
Fig. 4. The response of the system for the internal pressure of 
5 MPa with no thermal loading; (a) Non-dimensional radial 

displacement, (b) Non-dimensional radial stress

(a)

(b)
Fig. 5. The response of the system for the internal pressure of 
500 MPa with no thermal loading; (a) Non-dimensional radial 

displacement, (b) Non-dimensional radial stress

Fig. 6. Temperature distribution through the wall of the vessel 
for different inner fluid temperatures



A. Talezadehlari et al., AUT J. Mech. Eng., 1(1) (2017) 75-88, DOI: 10.22060/mej.2016.744

82

the internal temperature is higher than the initial temperature, 
the temperature increases in all layers and the vessel tends to 
expand. Because the outer layers expand more than the inner 
layers, tensile stresses will be produced in all layers.

3- 4- The effects of thermal and loading conditions
In this section, by means of the superposition principle, the 
simultaneous effects of thermal and mechanical loadings 
on the behavior of the spherical vessel are investigated. By 
determining the displacement and stress fields caused by the 
thermal and mechanical loadings, the response of the system 
to any thermo-mechanical loading can be easily predicted.
Fig. 8 illustrates the induced displacement and stress by an 
internal pressure of 50 MPa and an inner fluid temperature of 
150 ºC. As can be seen in the figure, the effect of the internal 
pressure is dominant in the inner layers, while in the outer 
layers, where the effect of mechanical stress decreases, the 
effect of thermal stress is dominant. This is due to the fact that 
according to the results of the previous sections, a maximum 
stress of 2 MPa is produced because of  the thermal loading 
for an inner fluid temperature of 150 ºC which has been the 
maximum inner fluid temperature. Meanwhile, the stress 
produced by the mechanical loading is in the order of applied 
internal pressure that is much higher than the thermal stress. 
By increasing the internal pressure, the effect of mechanical 
stress becomes more dominant than the thermal stress and the 
behavior of the vessel gets closer to Fig. 3.

3- 5- The effect of η0 and η1
Different cases are studied in order to investigate the effects 
of the parameters of the viscoelastic layer. In the first case, it 
is assumed that all interfaces possess the same properties and 
only the effect of η0

  is discussed. For this purpose, η1
j (j=1,…

,(N-1)) is considered equal to unity and the behavior of the 
vessel under thermal and mechanical loadings is studied for 
three different values of η0

j . Fig. 9 demonstrates the effect of 
this parameter on the non-dimensional displacement. It can 
be concluded from this figure that by increasing the value of 
η0

j , the stabilization time of the system decreases. In  other 
words, higher values of η0

j  means stiffer viscoelastic layers 
which leads to a reduction in the displacement of these layers 
and consequently overall displacement of the wall of the 
vessel. This may be explained by Eq. (22), as well.

(a)

(b)
Fig. 7. (a) Non-dimensional displacement and (b) radial stress 

due to different thermal loadings

(a)

(b)
Fig. 8. The response of the system for the internal pressure of 
500 MPa and the inner fluid temperature of 150 ºC; (a) Non-
dimensional radial displacement, (b) Non-dimensional radial 

stress

_ _

_ _

_

_
_

(a)
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Fig. 10 depicts the non-dimensional stress distribution along 
the vessel thickness. According to this figure, by increasing 
the value of η0

j, the stiffness of the viscoelastic layer 
increases, which in turn increases the value of the stress in 
different layers. This is due to the fact that if the viscoelastic 
layer possesses a lower stiffness, it can endure higher stresses 
through higher deformations, which reduces the stress in 
other layers of the vessel. In other words, when η0

j increases, 
the viscoelastic layer becomes stiffer and thus deforms less 
and this less deformation passes the stress to the other layers.
In the second case, various viscoelastic parameters are 
considered for different layers. In order to investigate the 
effect of changing η0

j of only one layer, this parameter is 
changed in that specific layer and all other η0

j are kept 

constant and equal to 0.05 and η1
j=1. Fig. 11 illustrates 

the effect of variation of η0 in one interface on the non-
dimensional displacement of the whole vessel.
By comparing the results presented in this figure with the 
results of Fig. 9b (where η0

j=0.05 for all interfaces), it can 
be concluded that by changing the value of η0 even in one 
interface, the stabilization time of the system and the also 
ultimate displacement of all layers change. However, the 
effect of changing this parameter is not the same for each 
interface and by approaching to the outer layers (as j increases 
in η0

j), this effect decreases. For example, by decreasing the 
amount of η0

1 from 0.05 to 0.01, the displacement of the first 
layer increases about 60%; while by decreasing the value 

(b)

(c)
Fig. 9. The effect of η0

j on the non-dimensional displacement of 
the spherical vessel under mechanical and thermal loadings,

(a) η0
j=0.01, (b) η0

j=0.05 and (c) η0
j=0.25

_

_ _ _

_

_

(a)

(b)

(c)
Fig. 10. The effect of η0

j on the non-dimensional stress of the 
spherical vessel under mechanical and thermal loadings,

(a) η0
j=0.01, (b) η0

j=0.05 and (c) η0
j=0.25

_

_ _ _

_
_

_

(a)

_

_

_
_

_
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of η0
5 from 0.05 to 0.01, only a 3% increase occurs in the 

displacement of the first layer, and by decreasing the value 
of η0

9 only negligible changes occur in the displacement of 
the first layer. This is due to the fact that the amount of the 
stabilized displacement of the inner layers is much greater 
than that of the stabilized displacement of outer layers, and 
therefore, the response of the system is more sensitive to the 
properties of the inner layers rather than the outer layers. This 
description is also shown in Fig. 12.
Fig. 13 shows the effect of changing the value of η0

j in only 
one of the interfaces on the stabilized stress of the whole 
thickness. The results show that, by changing the value of η0

j 
in one of the interfaces, the produced stress in the whole 
vessel changes in such a manner whose  effect is more 

significant on the outer layers rather than the inner ones. 
Meanwhile, the effect of changing of η0

j is not the same for 
different interfaces and by approaching to the outer layers, 
this effect vanishes.

(b)

(c)
Fig. 11. The effect of changing of η0

j in one of the interfaces on 
the non-dimensional displacement of the spherical vessel under 

thermal and mechanical loadings; (a) η0
1=0.01 and η0

j=0.05 
for all other interfaces, (b) η0

5=0.01 and η0
j=0.05 for all other 

interfaces and (c) η0
9=0.01 and η0

j=0.05 for all other interfaces

__
_

__
_

_

(b)

(c)

(a)

Fig. 12. The effect of changing of η0
j in each interface on the 

non-dimensional stabilized displacement of the spherical 
vessel under thermal and mechanical loadings. (a) the effect 
of changing η0

1; (b) the effect of changing η0
5; (c) the effect of 

changing η0
9

__

_

_

_

_

_

_

_

(a)

(b)
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In order to study the effect of η1
j, a case is considered in which 

η0
j=0.05, η1

1=1 and η1
j for all other layers are the same and 

equal to 0.1 and 10. Figs. 14 and 15 demonstrate the effect 
of η1

j on the non-dimensional displacement and stress of the 
vessel, respectively. Comparing the results of Figs. 14 and 
15 with the those of Figs. 9b and 10b (in which η1

j=1 for 
all layers), reveals the fact that increasing η1

j=1 increases the 
stabilization time of the system while this variation does not 
affect the amount of the stabilized displacement and stress. 
This may be explained by considering the fact that η1

j is factor 
which represents the effect of time. As time passes and the 
system reaches its steady-state, η1

j loses its effect and the 
parameter that controls the displacement and stress is η0

j. 
Thus, it may also be concluded by means of Eq. (22).

4- Conclusions
In this paper, the time-dependent response of a layered spherical 
vessel with viscoelastic interfaces of negligible thickness, 
under thermal and mechanical loadings has been analytically 
investigated. To this end,  the thermoelasticity equations 
have been solved for each layer and by applying suitable 
boundary conditions, the displacement and stress fields have 
been determined through the thickness of the vessel. After 
verification, the proposed model is employed to determine the 
effects of different parameters on the response of the system. 
The obtained results showed that the presence of viscoelastic 
interfaces leads to a discontinuous displacement field along 
the wall thickness, while the stress field remains continuous. 
Furthermore, the presence of viscoelastic interfaces makes 
the system response time-dependent. Meanwhile, it should be 
mentioned that the response of the system becomes stable as  
time goes on. Investigating the effects of different parameters 
revealed that the only parameters that affect the stabilization 
time are the parameters of the viscoelastic layers (e.g. η0 and 
η1); while, parameters such as the magnitude of the thermal 
and mechanical loadings do not affect the stabilization time. 
Generally, by increasing the magnitude of η0 and decreasing 
the magnitude of η1 the stabilization time decreases. Also, 
it is shown that changing the magnitude of η0 can affect the 
final displacements and stresses in the vessel, while changing 
the magnitude of η1 does not change the magnitude of these 

(c)
Fig. 13. The effect of changing of η0

j in each interface on the 
non-dimensional stabilized stress of the spherical vessel under 
thermal and mechanical loadings. (a) the effect of changing η0

1; 
(b) the effect of changing η0

5; (c) the effect of changing η0
9

_
_

_

_

_
_ _ _

_

_
_

_

_
_

(a)

(b)
Fig. 14. The effect of changing of η1

j on the non-dimensional 
stabilized displacement of the spherical vessel under thermal 

and mechanical loadings. (a) η1
1=1 and η1

j=0.1 for other 
interfaces; (b) η1

1=1 and η1
j=10 for other interfaces

_ _
_ _

_

(a)

(b)
Fig. 15. The effect of changing of η1

j on the non-dimensional 
stabilized stress of the spherical vessel under thermal and 

mechanical loadings. (a) η1
1=1 and η1

j=0.1 for other interfaces; 
(b) η1

1=1 and η1
j=10 for other interfaces

_ _
_ _

_

_
_

_
_

_

_
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fields. In addition, changing the viscoelastic properties of 
each interface may change the stabilization time of the system 
and the produced displacements and stresses of other layers, 
as well. However, changes which are made in the properties 
of different layers have different effects. The results showed 
that the displacement and stress fields vary linearly versus the 
internal pressure of the vessel.
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