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ABSTRACT: Athletes’ balance control ability is essential in different sports. Effective analysis of
athletes’ balance control ability is an effective way for coaches and sports teams to identify subjects’
skills. In the last few years, with the rapid growth of technology in sports, the necessity of using
intelligent methods has increased. This study compares different artificial intelligence approaches to
evaluate balance control ability by processing time-series data from the center of pressure. A recording
pad collects center of pressure data from four types of subjects, ranging from professional skiers to
non-athletes. Several experimental feature-extraction techniques were applied to the data, and the
resulting features were used as input for artificial intelligence methods. This paper utilizes a multi-layer
perceptron to classify subjects’ skill levels. Compared with other methods, the multi-layer perceptron
achieves more than 92% accuracy in classifying subjects’ proficiency, yielding the best performance.
Other methods, including k-nearest neighbors and support vector machines, achieved 72% and 69%
accuracy, respectively. Analysis of center of pressure data can help identify promising individuals for
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1- Introduction

Balance control is an intricate process that is controlled
by the interaction of various neurophysiological mechanisms
[1]. These mechanisms adjust a special aspect of balance
control, including “anticipatory postural adjustments” (APA),
“reactive postural control” (RPC), “sensory orientation”
(SO), and “dynamic gait” (DG), etcetera.

Standing posture is a complex system that concerns the
maintenance of the relative positions of body segments. RPC
indicates the capability to stay stable after the extrinsic factor.
The use of numerous muscles and the integration of different
sensorial inputs (visual, vestibular, proprioceptive) is a part
of the complexity of this system [2]. In order to evaluate the
subjects’ performance, it would first require to be quantified.
It is generally assumed that the body is relatively rigid and
oscillates as a one-link inverted pendulum with the rotation
axis at the ankle. In order to measure the balance ability,
the center of pressure (COP) of the feet is widely used.
The COP is analyzed using various statistical methods; the
most common is calculating the speed of COP movement.
The COP motions represent the net neuromuscular control
or the subject’s postural control. On the other hand, the next
popular measurement is the area of the stabilogram (AOS)
or confidence ellipse, which contains most of the COP data
points. The AOS represents the subject’s net performance: the
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smaller the surface, the better the performance [3].

Although several studies have examined the center of
gravity (COQG) or center of mass (COM) as complementary
indicators of postural performance, evaluating these quantities
often involves complex computations and estimation
methods based on inverse dynamics or multi-link modeling.
In contrast, COP-based analysis offers a more practical and
widely accepted approach, especially in applied studies where
ease of implementation and repeatability are crucial. For
instance, Caron et al. demonstrated that although COM and
COP exhibit distinct trajectory characteristics, COP remains
a reliable proxy for neuromuscular control and is commonly
used in standing posture assessments. Therefore, this study
focuses exclusively on COP-based features, in line with its
aim to explore accessible and interpretable classification
models for balance evaluation 3].

Ren Et al. attempted to implement artificial intelligence to
evaluate different types of balance control subsystems. First,
the raw data were pre-processed to remove noise, and then
224 features were extracted. These features are divided into
two groups: 1- Traditionally used features for the COP data
(this part contains 124 features). 2- Features extracted from
pixel-based COP displacement diagram (this part contains
100 features). Then, this feature set was applied to the
regressors to map features to the evaluation scores provided
by physical therapists [1].

In this study, Feature Extraction and Classification using
artificial intelligence methods are the primary purposes. First,
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data collection and pre-processing are discussed; later, the
feature extraction equations are applied to the raw data, and
the feature set is prepared. Finally, three artificial intelligence
methods were used to classify feature sets into four groups.

While previous studies have examined postural control
across various conditions—such as visual deprivation,
sensory manipulation, or equipment effects—many have
primarily focused on comparisons between different sports or
generalized balance assessments without directly addressing
skill classification. In contrast, this study analyzes COP data
collected from a mixed population including non-athletes,
recreationally active individuals, semi-professional, and
national-level skiers. This work uses three distinct machine
learning models (MLP, SVM, and kNN) to classify athlete
proficiency based on static postural data in both bipedal and
unipedal positions. The proposed approach demonstrates
how data-driven methods can be applied to differentiate
performance levels in a way that may support training and
monitoring strategies in applied sports settings.

2- Background and related works

Noe etal. examined the postural performance of two groups
of male skiers at different expertise levels and measured the
effects of postural control on the suppression of visuals. The
subjects were seven national-level and seven regional-level
skiers. They were asked to stand as still as possible on a
force platform, with eyes open or closed, while wearing or
not wearing their ski boots in 3 postures. One posture was
the stable standing position, and two disturbance postures,
generated via the seesaw device, induced instability in the
Antero/posterior (AP) and Medio/lateral (ML) directions.
The COP surface (90% confidence ellipse) and the COP
velocity (sum of the cumulated COP displacement divided by
test duration) were calculated [4].

Results of this study show that stability performance
with ski boots is similar across postures for both groups,
as indicated by no significant difference in COP surface.
However, in the normal position (without boots), the COP
surface was significantly greater for national-level skiers.
Thus, regional skiers could be considered to have shown
the best postural performance in these positions. The results
obtained under normal conditions do not align with previous
studies on expertise in sports and postural ability, as they
show reduced postural performance as competition increases.
This can be explained by the stiff alpine ski boots that
competition skiers use, which act as external ankle support
and mechanically restrict ankle joint motion. Moreover, this
study’s results revealed no interaction between the expertise
level and visual condition factors [4].

On the other hand, Asseman et al. examined fifteen
gymnasts in three postures: bipedal, unipedal, and handstand
with open eyes to determine the correlation between the level
of athletes and COP surface and mean COP velocity. This
research was derived from the fact that postural performance
and control are not related to the expertise level of athletes

(2].
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Andreeva et al. investigated the postural stability of 963
athletes (aged 6-47 years) in fourteen different sports fields
[5]. The test was performed with eyes open and closed, in
a bipedal posture. Based on the velocity of COP with open
eyes (VCOP-EO), the result indicates the postural stability of
athletes as below:

Shooting < football < boxing < Cross-Country Skiing <
gymnastics < running < Team Games Played with Hands <
wrestling < tennis < alpine skiing < rowing < speed skating
< figure skating.

Caron et al. examined seven healthy male subjects (non-
athletes) to understand the relationship between the center of
pressure and the center of gravity (COG). They investigated
the trajectory path of COP and COG in the frequency and
time domains. Besides, their experiments examined whether
the COP variable was sufficient for analyzing the balance
control. Caron et al. showed that there is no linear relationship
between COP and COG, but the COG is related to the
frequency and amplitude of the COP motion. Also, the COP
is an insufficient variable to analyze sensory performance
and balance control thus, simultaneous analysis of the COP
surface and COP motion velocity is necessary [3].

Agostini et al. investigated 46 volleyball players and
42 non-athlete subjects with different visual and posture
conditions. This research defines multiple parameters based
on COP: mean velocity, sway area, root-mean-square values
for the two axes, minor and major, and the eccentricity of the
smallest ellipse 6].

Paillard et al. analyzed eight high-level professional
soccer players and nine regional soccer players in reference
conditions and in manipulated sensorial conditions with eyes
open or closed. To manipulate the normal condition, each
subject put his feet in a bucket of ice and water (5 degrees
Celsius), stayed on a force plate, and measured the surface
and velocity of COP motion. Results show that high-level
soccer players have better postural control in both conditions
[7].

On the other hand, Davlin performs a test on 57 gymnasts,
58 soccer players, 70 swimmers, and 61 non-athletes.
Subjects’ characteristics included height, weight, shoulder
width, age, and training time, and the non-athlete group
served as the control group. Dynamic balance was assessed
on a stabilometer for 30 seconds per subject, and the test
was repeated 7 times. The stabilometer recorded the time the
participant held the platform within 5° of horizontal on either
side. They considered sex as not related to balance control.
Also, the result shows that gymnasts have better stability than
soccer players and swimmers, respectively [8].

There is another application of COP pressure sensing:
Qian et al. designed an approach for people recognition
based on gait and 3D COP. 3D COP contains the pressure
profile and location of the pressure point for each foot. They
collected ten subjects, extracted five key points, and defined
four feature sets to train the proposed classifier method. The
proposed method is the binary version of linear discriminant
analysis, called Fisher Linear Discriminant (FLD), and the
best accuracy reported is 94.2 percent 9].
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Table 1. Information for the subject dataset used in this paper.

Subject level Number of subjects Age Class Code Sampling frequency
National team member 4 19.45+5.0 A 100 Hz
Semi-professional 16 21.43+3.98 B 100 Hz
Normally trained 6 20.04+4.6 C 100 Hz
Common person 8 21.81£3.8 D 100 Hz

Human motion analysis can also be used in robotics.
Ferreira et al. acquired images of a walking person fitted with
a set of white light-emitting diodes (LEDs). The acquired
trajectories of the light points were then used to specify joint
trajectories in a bipedal robot. Ferreira et al. also developed
a system to acquire the center of pressure. This system uses
eight force sensors, four under each foot. The influence of
the human torso angle on the COP position during walking
was confirmed. Data was used in a support vector regression
(SVR) method for biped robot sagittal balance control [10],
[11].

Zhang et al.’s research criticized the use of raw COP data
and presented an implementation of the Poincaré plot for
measuring COP trajectories, and validated its effectiveness
through tests. The validation was conducted on 136 healthy
adults, and the data were categorized based on age and
open or closed eyes. The results suggested that the Poincaré
analysis of posturography (the trajectory of the COP plot
and its confidence ellipse) provided in-depth information on
posture control using nonlinear indic [12].

Besides eye and physical distortions, other disturbances
can affect the balance of even elite athletes. In Viseux et al.’s
research, a novel disturbance was considered. The effects
of a small additional thickness placed under the great toes
were evaluated on the COP and balance parameters in 14
elite women’s handball players. Features that are extracted
from COP were (i) the surface of COP excursions, (ii) the
frontal (X) mean position of the COP, (iii) the sagittal (Y)
mean position of the COP, and (iv) the mean speed of the
COP. Results show that adding 0.8 mm under both toes
significantly decreases COP surface and mean velocity, but
there is no difference in COP X and Y positions [13].

In summary, previous studies have primarily investigated
postural stability across various sports or conditions such as
footwear, visual occlusion, or sensory manipulation, often
using COP features to describe general balance performance.
While some employed basic statistical analysis, few applied
machine learning techniques, and even fewer conducted
classification tasks. Moreover, many studies focused on
elite athletes or specific groups, without considering a
mixed population across skill levels. However, this research
analyzes COP data collected from a diverse group, including
non-athletes, semi-professionals, and national-level skiers,
and applies multiple machine learning classifiers to evaluate

proficiency based on static postural tasks. This structured
approach enables a more comprehensive and practical
assessment of balance control in athletic screening and
training contexts.

3- Method and data

This paper aims to classify the COP of subjects into four
groups using intelligent classification methods. First, data
collection and experimental tests are discussed. After that, the
raw data is pre-processed in MATLAB and windowed using
two different time steps. Then, the feature extraction operation
is applied to the data to find individual characteristics of the
subject’s COP pattern during each window. During the feature
extraction step, 28 features are extracted to train the proposed
methods. Finally, the result of each classifier is reported and
compared.

3- 1- Data Acquisition

This paper uses a dataset collected from 34 real freestyle
skiers from China’s national team and three other groups
to validate and compare the proposed method with other
subjects’ balance control ability. The dataset contains four
different groups of subjects, and each group has a different
number of members. The details of the dataset are shown in
Table 1. Also, the participants had an average height of 169.1
+ 10.0 cm and an average weight of 64.8 + 11.1 kg (n=34).

In the experimental study, subjects were asked to stand
on a balance meter for 30 or 45 seconds, with two feet at
the first trial and one foot (left foot) at the second trial, and
to try to maintain their best balance. The area of the balance
meter is 65 cm X 40 cm and can record data in anteroposterior
and mediolateral directions, named x and y in this paper,
respectively. The dataset is divided into four different
levels of athletes. The subjects were from various groups,
including high-level skiers from China’s national team, semi-
professional skiers, normally trained athletes, and common
people.

These four groups are mentioned as A, B, C, and D,
respectively. Clearly, the balance control ability increases
from D to A. For example, group A has the best balance
control ability. Fig. 1 shows one subject standing on his left
foot while measuring COP on a record pad. Each athlete
stands in two conditions, standing upside down and straight
on two feet. This test condition is named ‘both’ in this paper.
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Fig. 1. Test procedure for standing on the left foot.

Next, the same individual is standing on his/her left foot,
as shown in Fig. 1. This posture is named ‘left’ through the
context. The standing pad records the center of pressure of
subjects over time. Fig. 2 is the schematic of the COP of one
subject from each class. As shown, the athlete with a higher
professional level had much less displacement in each axis.
After data collection, feature extraction operations are applied
to raw data, and the statistical features are extracted.

3- 2- Pre-processing

The raw data did not require any additional filtering,
normalization, or outlier removal, as it was recorded under
controlled experimental conditions and was sufficiently clean
for analysis. In order to increase data samples, the windowing
method was applied to each individual subject. For f1-f9
features, a window length was selected as two seconds and
three seconds was selected for features that are calculated
by the difference of displacements (f10-f27). The reason
for choosing two different time intervals for windowing is
that, when calculating the f10—f27 features, if the window
length is too short, the feature values decrease significantly.
Besides min, max, and mean in AP/ML directions, there is the
distance that is defined as Eq. 1:

mag = (x> +y7) (1

Where x and y pair could be displacements, velocity, or
acceleration in AP and ML direction, respectively. In order to
calculate velocity (acceleration) in each direction, the related
sequential displacements (velocities) were subtracted. Since
the time step during the data acquisition was fixed, dividing
all values by the time step does not affect classification results.
Because the velocity and acceleration data were not divided by
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the time step, they were represented by A and A”, respectively.

The confidence ellipse was calculated using all data for
each window and in both AP/ML directions. The confidence
interval for one direction was defined as Eq. 2:

Cl =%+zs @)

e

Where CI_is the confidence interval of the x data and X is
the average value of x (displacement in the AP/ML direction).
z coefficient shows the confidence levels (for instance, it
is 1.28 for an 80% confidence interval). S, is the standard
deviation of the dataset and is calculated independently.

In Fig. 3 and Fig. 4, the mean of the confidence ellipse
areas is illustrated based on the level of skiers and the foot
that was tested, respectively.

3- 3- Feature Extraction

In order to classify the COP of subjects, 28 features were
extracted from the collected COP data, which are illustrated
in Table 2. To evaluate the individual contribution of each
extracted feature to model performance, a leave-one-feature-
out (LOFO) sensitivity analysis was performed. For each
feature i, the classifier was retrained after omitting only that
feature; the resulting loss was compared with the baseline
loss obtained with the full feature set. Results are based on
single LOFO retraining runs per feature; therefore, they
are presented as sensitivity indicators rather than formal
statistical estimates.

Four groups of datasets are defined in this study:
displacement, velocity, acceleration, and confidence ellipse.
The first three dataset groups have been extracted through x
(AP) and y (ML) directions with the Euclidean distance. For
each direction /distance, the minimum, maximum, and mean
of the window array were calculated as a feature. Therefore,
each dataset has nine values. Ren et al. used a range of AP/
ML directions as features for their study [1], but in this paper,
due to the increasing features, minimum and maximum
values were selected instead of the range of motion.

3- 4- Pattern Classifiers

This section briefly explains the pattern classifiers
proposed in this paper, then describes the architecture and
parameters of each classifier. Pattern classification tasks
are divided into generative and discriminative categories.
Generative models are among the most important domains
in machine learning and computer vision, and they are highly
informative. In complex problems where the input vector
has a wide range, it is difficult to assign a label to all data.
Thus, we can use a generative model that produces a joint
distribution over the input data and the class label.

Discriminative models are generally used for classification
tasks, not for synthesizing samples of interest. These models
have good classification or discrimination task performance,
but their modeling capability is limited because they focus
on decision boundaries. This paper uses two discriminative
models (kNN and SVM) and one generative model (MLP)
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Fig. 1. Position of COP in AP/ML directions (time unit = sec, displacement unit = mm)..
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Table 2. Features and description.

Variable sensitivity

Feature Description Variable name analysis (normalized)
F1 The minimum of the COP displacements in the AP direction Xmin 27.59
F2 The maximum of the COP displacements in the AP direction Xmax 62.06
F3 The mean of the COP displacements in the AP direction Xmean 15.21
F4 The minimum of the COP displacements in the ML direction Ymin 29.22
F5 The maximum of the COP displacements in the ML direction Ymax 3142
Fé6 The mean of the COP displacements in the ML direction Ymean 22.44
F7 The minimum distance of the COP displacements in the AP-ML direction magmin 70.32
F8 The maximum distance of the COP displacements in the AP-ML direction magmas 32.02
F9 The mean distance of the COP displacements in the AP-ML direction magmean 59.46
F10 The minimum COP velocity in the AP direction AXmin 5.52
F11 The maximum COP velocity in the AP direction AXmax 82.59
F12 The mean of the COP velocity in the AP direction AXmean 53.02
F13 The minimum COP velocity in the ML direction AYmin 19.90
F14 The maximum COP velocity in the ML direction AYmax 0.38
F15 The mean of the COP velocity in the ML direction AYmean 40.28
F16 The minimum distance of the COP velocity in the AP-ML direction Amagmin 23.59
F17 The maximum distance of the COP velocity in the AP-ML direction Amagmax 2224
F18 The mean distance of the COP velocity in the AP-ML direction Amagmean 100.00
F19 The minimum COP acceleration in the AP direction A%Xmin 48.95
F20 The maximum COP acceleration in the AP direction AXmax 4431
F21 The mean of COP acceleration in the AP direction AXmean 13.37
F22 The minimum of COP acceleration in the ML direction A%Ymin 78.51
F23 The maximum COP acceleration in the ML direction AYmax 16.31
F24 The mean of the COP acceleration in the ML direction Aymean 7.00
F25 The minimum distance of the COP acceleration in the AP-ML direction A’magmin 42.63
F26 The maximum distance of the COP acceleration in the AP-ML direction A’magmax 19.88
F27 The mean distance of COP acceleration in the AP-ML direction A’magmean 29.62
F28 85% confidence ellipse area (mm?) CE 21.11

[14], [15], [16].

k-Nearest Neighbor (kNN): One of the simplest and
casiest-to-implement methods for classification is the
k-nearest neighbor, also known as lazy learners. kNN does
not need a training step and classifies by making a decision.
The classification operation is by finding a group of k
objects in the training data that have the most similarity to
the test data, and assigning the label of the training data to
the test object. Finding the best number for k is a challenge
because small k& can be sensitive to noise, and large & may

include more classes. Another challenge for this method is to
assign the right label to an object. As mentioned above, k
is a group of classes that, based on the selected criteria, are
closest to the test objects. For assigning a label to test objects,
the number of classes that exist in & should be counted, and
the most frequent class that is counted in k should be selected
as a label of the object. The simplest way is to count each
class in k and choose the most voted class[15], [17].
Multi-layer perceptron (MLP): In recent years, artificial
neural networks (ANNs) have been used for regression,
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prediction, and classification tasks. These methods are
generally based on biological systems and research on how
the human brain works. ANNs are very reliable methods for
learning from imperfect or incomplete data and have shown
good results; therefore, they are useful for investigating data
from the real world, including natural noise [18]. A multi-
layer perceptron (MLP) is an ANN used in this paper. MLP
is a feed-forward neural network that includes an input layer,
and the number of neurons in this layer is calculated based
on the data size. Then, hidden layers are employed to process
data (one or multiple layers), and the last layer is utilized to
map processed data to the correct class. In the training step,
the data is fed to the input layer, which sends the resulting
information to hidden layers, and at the end, the processed
data is sent to the output layer to characterize the class of
data. For more details, see [19].

Support Vector Machine (SVM): As mentioned,
discriminative classifiers have superiority in the classification
task. SVM is one of the feed-forward and supervised
classifiers that is used in many classification problems.
The linear support vector machine tries to find the best
hyperplane to separate data and assign +1 or -1 to each class
x,,y,5i=12,.,0,y, e{-1,+1},x, e R . This method calls
one-against-rest and is used for data that is linearly separable.
The separating hyperplane Eq. 3 has two parallel lines with
a margin size of d called positive Eq. 4 and negative Eq. 5
support vectors [20], [21].

wx+b=0 A3)
x.w+b=1for y, =+1 (4)
x,.w+b<l1for y,=—1 (5)

Where w is normal to the hyperplane and |b| / "W || is the
perpendicular distance from the hyperplane to the origin. Fig.
5 shows the separator line and support vectors.

While a variety of other approaches, such as ensemble
methods, are also commonly applied in classification tasks,
they were not considered in this study due to the relatively
small dataset size, which could increase the risk of over
fitting in such models. The selected classifiers represent three
well-established and complementary paradigms in machine
learning: a distance-based method (kNN), a margin-based
classifier (SVM), and a neural network capable of modeling
nonlinear relationships (MLP). This combination provides
both simplicity and robustness, making it suitable for
evaluating balance control with limited data samples.

3- 5- Pattern Classifier Implementation

This paper utilized MLP, kNN, and SVM as pattern
classifiers to classify the dataset. These pattern classifiers
are implemented in the Python programming environment
(V 3.10). kNN and SMV use the SKlearn Python library,
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Fig. 5. Linear separating hyper planes for the separable
case. The support vectors are circled [20]

and MLP is implemented in the Tensor Flow framework
and Keras library. Parameters and the structure of pattern
classifiers are determined by trial and error. A summary of
pattern classifier parameters and structure is shown in Table
3. The goal of the classifiers is to determine the level and foot
that are used during the test. In fact, there are eight foot-level
clusters, two for foot (left and both foots) and four clusters for
levels (A, B, C, and D).

In this paper, kNN is set for five nearest neighbors, and
SVM uses the Radial Basis Function (RBF) as the kernel. The
structure of MLP is more complicated. This classifier has a
hidden layer with a seven-neuron output layer that contains
two neurons. The role of the last layer of this model is to
decide which label should be assigned to the input data. The
role of the last layer of this model is to determine which label
should be assigned to the input data. The output of the MLP
classifier is a vector with two values that show the proficiency
level of the subjects and their standing posture.

All classifier parameters were determined empirically
through repeated experiments and validation on the dataset.
The reported values represent the settings that consistently
provided stable training and reliable classification
performance. This approach follows common practice in
machine learning when the dataset size does not allow for
extensive grid search [22].

4- Results

In Table 4, the results for each of the classifiers are
illustrated. Despite the fact that the MLP classifies standing
posture and skier level together, it performs better than SVM
and kNN. SVM and kNN achieve higher accuracy in posture
classification than in level classification. The macro-average
of precision, recall, and F1-score is also reported in this table
because MLP produces a two-dimensional output; calculating
those parameters is not possible.

Fig. 6 and Fig. 7 represented the confusion matrix for
SVM and kNN classifiers, respectively. In these confusion
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Table 3. Methods and structures.

Method Parameters and structure

- Sequence of layers and number of neurons = {14, 7, 2}

- Learning rate = 0.1

- Loss function = Binary Cross Entropy

MLP - Arrange of activation functions = {relu, relu, sigmoid}

- Batch size = 16

- Epochs = 15

- Validation size = 0.2 of all with shuffle

- Nearest neighbor value k =5
KNN - Metrics = Minkowski

- Power = 2 /Euclidean distance

- Gaussian RBF kernel

SVM

_ 1 )
-V = /nfeaure(28).variance

Table 4. Results for the classification of each method.

Method Class Accuracy (%) MSE Precision Recall F1-score
MLP Level & foot 92.15 0.97 - - -

Level 72.67 0.61 0.70 0.71 0.70
kNN

Foot 93.60 0.25 0.94 0.93 0.93

Level 69.76 1.38 0.78 0.59 0.61
SVM

Foot 90.98 0.28 0.92 0.90 0.90

Foot Classification
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Both

Left Both
Predicted label
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True label

Fig. 6. SVM confusion matrix.
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matrices, as illustrated, if skiers are more experienced,
classification is much easier for the algorithms. However, the
MLP’s confusion matrix is three-dimensional, so it cannot be
illustrated here.

To examine the robustness of the reported accuracies, an
additional validation was performed by adding controlled
variance to the original dataset (¢ = 0.15, x = 0, Domain
proportional = 1/20). When models were re-evaluated on this
perturbed dataset, the MLP classifier maintained an accuracy
of 82.15%. This result indicates that the performance
advantage of MLP is not solely dependent on the specific
characteristics of the training data, but remains stable under
data variability.

An analysis of the misclassifications reveals that errors
were most frequent in the classification of athlete proficiency
levels, particularly between adjacent groups such as semi-
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professional and normally trained skiers. This suggests
that COP patterns in these categories share overlapping
characteristics, which may limit the separability of features.
In contrast, national-level athletes were classified with
higher reliability, suggesting more distinct balance-control
signatures. Posture classification showed fewer errors across
all methods, reflecting the clearer differences between single-
leg and double-leg stances. These findings highlight that future
improvements could focus on refining feature extraction to
capture subtle differences between similar proficiency levels,
or on employing advanced model architectures designed to
enhance class separability.

When comparing these results with prior research, some
notable similarities and differences emerge. Earlier studies
often examined postural control under sensory manipulations,
such as vision removal or unstable platforms [2], [4], while the
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present work focused specifically on distinguishing athlete
proficiency levels from COP signals. Ren et al. [1] applied
artificial intelligence to COP data with a larger set of extracted
features, but their aim was to map performance scores from
therapists rather than to classify expertise levels directly. In
contrast, the present study shows that a reduced feature set
combined with machine learning classifiers can still achieve
strong accuracy, particularly with MLP. Although MLPs are
well-established in general machine learning applications,
their use in the context of balance control assessment
provides new insights: the ability to simultaneously classify
both the posture condition and the proficiency level. This
distinguishes the approach from previous work that relied on
single-dimensional analyses or traditional statistical features.
Furthermore, while Caron et al. [3] suggested that COP alone
may be insufficient to capture balance control, our results
demonstrate that COP-based features remain informative for
distinguishing between groups of athletes, especially at higher
proficiency levels. Together, these comparisons suggest that
the proposed approach complements existing findings and
contributes a novel perspective to athlete evaluation.

5- Conclusion

This study applied three different classifiers to 34 skiers’
COP data to examine the sportsmen’s proficiency level.
The classification was based on a feature set containing 28
features proposed in Section 3.3. Raw data was collected with
a 100Hz frequency on a record pad in 30 or 45 seconds. In
order to increase the number of data samples, the windowing
method was applied to each subject, as explained in section
3.2.

Second, in this paper, three pattern classifiers were
applied to the dataset. Multi-layer perceptron (MLP), support
vector machine (SVM), and K-nearest neighbor (kNN) were
suggested for the classification task.

SVM was trained to classify the foot and level of athletes
separately, although kNN tries to assign the right foot or
level label to subjects apart. On the other hand, because
MLPs are capable of classifying complex data, they were
trained to simultaneously recognize level-foot labels. As
expected, artificial neural networks performed better in this
classification. Average foot-level accuracy was 92.15%,
82.13%, and 80.37% for MLP, kNN, and SVM, respectively.

The most important application for our study is to define
each subject’s proficiency before entering this field of sport.
Although there is a possibility for people to be selected for the
sports field in which they are more likely to succeed. On the
other hand, with these algorithms, the athlete with the greater
likelihood of success in competitions can be selected. These
methods can be used to train an athlete and their assistant.
When an athlete is injured, the analyzed COP data can help
coaches and assistants determine whether the athlete has fully
recovered.

It should be noted that the real-world deployment of
COP-based classification systems may face challenges
related to sensor accuracy, environmental conditions, and
inter-individual variability. Laboratory-grade force plates can

241

reduce noise and enhance precision, but field applications
may introduce additional uncertainties. Addressing these
factors will be essential for translating the present findings
into reliable, practical tools. Future studies could extend this
work by incorporating additional physiological measurements
alongside COP data or by applying deep learning approaches
to capture complex patterns in balance control better.
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