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ABSTRACT: This paper provides a hybrid control strategy for the aim of nullifying the vibration of 
flexible appendages in satellite structures. These vibrations often occur during the deployment of satellite 
panels. To maintain performance and ensure attitude stability, a robust control framework is essential. 
To achieve this, piezoelectric actuators are incorporated into the panels to actively suppress structural 
vibrations. Lyapunov Nonlinear Model Predictive Control (LNMPC) is introduced in order to guarantee 
satellite stability and robustness. This algorithm is similar to the Piece-Wise Affine (PWA) method, but 
the nonlinear dynamics of the system is used instead of linearization. Additionally, Anti-Unwinding 
Sliding Mode Control is employed into this algorithm and combined with LNMPC to neutralize the 
vibration actively, furthermore this composite controller assists to control both kinematics and dynamics 
properly also steering the reaction wheels to zero after every maneuver to save energy in the presence 
of uncertainty, external disturbance and actuators dynamics considered into the algorithm. Furthermore, 
close loop stability analysis is provided by utilizing a candidate Lyapunov function.
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1- Introduction
Over the past few years, the use of satellites to assist with 

various tasks has become a common practice in the field 
of space exploration. However, significant costs are often 
associated with these missions, which frequently encounter 
numerous challenges. Once deployed into their predetermined 
orbits, flexible satellites unfold their solar panels to absorb 
sunlight and generate electricity. This process can cause 
vibrations that may disrupt the satellite’s attitude. Therefore, 
designing an appropriate control system is essential to ensure 
satellite stability.

Lyapunov nonlinear model predictive control is a robust 
control strategy that is widely used across different industries. 
It employs a cost function to optimize the algorithm and guide 
the system toward a steady state. Two common optimization 
methods are the active set method and sequential quadratic 
programming. In this paper, we have chosen the active set 
method due to its ability to solve quadratic programming 
problems with high accuracy and speed. Active set method 
usually are used in linear applications but in this study it’s 
correspondence with nonlinear systems are discussed[1]. 

Anti-unwinding sliding mode control(AUSMC) is 
employed additionally to assurance kinematics convergence. 

This issue has been recognized by many scientists and 
researchers, a linear model predictive control and a terminal 
sliding mode controller are combined to passive suppress the 
satellite’s vibrations in  and enhance satellite stability in the 
presence of actuator faults[2].

Hybrid controller involving model predictive control and 
feedback linearization are designed. This combination has 
ability to both control the attitude and angular velocity of the 
reaction wheels[3].

MPC used due to station keeping and momentum 
management of a low-thrust satellite. MPC is scheduled to 
maintain the satellite in a tight latitude and longitude frame[4]. 

An extended model predictive control (EMPC) is 
employed in order to keep the satellite in a nadir direction in 
the presence of actuator faults. This MPC algorithm is similar 
to the linear model and it needs dynamics model linearization 
and Hildreth method to handling the constraints[5].

MPC algorithm named multi-horizon multi-model 
predictive(MHMM-PC) control is discussed.it used a 
quadratic cost function and sequential quadratic programming 
(SQP) method to optimize the algorithm due to stabilize a 
electromagnetic tethered  satellite[6].

MPC and LQG (Linear Quadratic Gaussian) are combined 
for the purpose of the control the satellite attitude and improve 
the accuracy during docking and refueling. One of the main *Corresponding author’s email: m.malekzadeh@eng.ui.ac.ir
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challenges is fuel sloshing disturbance, and it can disrupt 
the satellite attitude to prevent this, these to controllers are 
merged to optimize and enhance the performance of the 
satellite. The linear MPC is used in this paper [7].

For the aim of control the high thrust in a cube sat with 
solid thruster a piece-wise affine model predictive control 
(PWA-MPC) is proposed. Solid thruster usually have a large 
eccentric torque and it can lead to rapid attitude maneuvering 
so MPC for the reason that it can frequently optimize the 
system can improve the cube sate thruster torque in an 
accuracy way is chosen and in this paper linear model is 
used[8].

A new NMPC algorithm named multivariate radial basis 
function-based autoregressive model which uses sequential 
quadratic programming(SQP) to optimize the system for the 
propose of satellite attitude control[9].

All these researches are compared to this work, in this 
study flexible satellite nonlinear dynamics are incorporated 
into a Toeplitz matrix, and by optimizing it by active-set 
method the optimal control signal is yielded. Conventionally, 
the active-set method utilizes when inequality active 
constraints are in the problem, so in this work it is assumed 
that, if high maneuver is needed so satellite consumes high 
control effort and it is lead to active constraints in every 
optimal solution, moreover active -set method is able to be 
faster than SQP. Another problem is to steer the actuators to 
zero and ensure satellite stability every maneuvering in the 
presence of uncertainty, external disturbance and actuators 
dynamics, steering reaction wheels to zero will assist to save 
more energy and use it for the next maneuver.

The contributions of this paper are listed below
Forming a Toeplitz matrix containing the nonlinear 

equations of a flexible satellite, also it is optimized by active-
set algorithm which is faster and more accurate that SQP

Merging LNMPC and AUSMC in order to neutralize the 
satellite vibration in active mode

Focusing on satellite momentum management and 
the reaction wheels will be stop after maneuvering is 
accomplished.

Considering Modified Rodriguez Parameters (MRPs) as 
satellite kinematics equation and analysis hybrid controller 
performance in the presence of uncertainty, external torques 
and actuator dynamics.

In this paper, section 2 provides the 3DOF flexible satellite 
attitude dynamics, section 3 outlines about satellite control 
system design, section 4 is about the closed loop stability 
analysis, section 5 is illustrated the simulation diagrams and 
finally section 6 is a conclusion about our work.

2- Flexible Satellite Dynamics and Kinematics
Flexible spacecraft kinematics and dynamics equations 

are given.[10],[11]. Dynamic equations are represented by 
equations (1) and (2), where 3∈Rω  denotes the angular 
velocity matrix, 3 3×∈J R   is the positive definite symmetric 
matrix related to the momentum of inertia of the satellite.

3×∈ nRδ  The matrix represents the coupling between 
the rigid hub and the flexible appendages. ∈ nRη The 

vector signifies the modal coordinates related to the main 
body, and 3∈u R , 3∈d R characterize the control effort 
vector and external disturbances, respectively. Additionally, 

2 ×= Ω ∈ n n
nC Rξ  is the damping diagonal matrix, and 

2 3×= Ω ∈ n
nK R  is the stiffness diagonal matrix, 3 3×∈p Rδ  

is the matrix indicates a coupling matrix related to the 
flexible. Furthermore, 3∈pu R represents the piezoelectric 
control input acting on the flexible appendages. Equation (3) 
denotes the angular velocity skew-symmetric matrix, which 
is utilized in equation (1).
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Equations(4) and (5) are represented piezoelectric actuator 
voltage input computation.
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Equation (6) is used due to investigation the complexity of 
the model and considering the effect of the panels’ vibration 
into the equation and to improve accuracy, so in the whole of 
this paper this equation is utilized in the nonlinear equation.
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Equations (7) and (8) are related to the Euler angles of the 
satellite [ ]φ θ ψΘ =   and Fig.1 is depicted a schematic of 
a flexible satellite which is  extracted from [12].
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Equation (9) indicates the kinematic equation, where 
3∈Rσ is the vector related to the Rodriguez parameters. 
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3 3×∈I R is the identity matrix.
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2- 1-  Actuators Dynamics 
In this subsection, actuators dynamics are investigated 

inspired by [13]. Generally the reaction wheels are DC 
motors that are mounted in the satellite and can rotate any 
direction, these actuators should stop after any maneuver, it 
is for prevent actuators to be saturated or failed. Equation(10) 
is the differential equation for the armature of the DC motor 
circuits.
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aR  is the armature, aL  denotes the armature inductance, 
bK indicates the back emf constant, Ω  is the angular velocity 

of the motor, ai  is the armature current and ae denotes the 
applied armature voltage.

 

J J u d        (1) 
 

T
p pC K u           (2) 

  
 

3 2

3 1

2 1

0
0

0

 
  

 



 
   
  

 

 
 

(3) 

 

y p  (4) 
 

T
pu p  (5) 

 

1
TJ J     (6) 

 

R   (7) 
 

1

1 0 sin
0 cos sin cos
0 sin cos cos

R


  
  



 
   
  

 

 
 

(8) 

 

1{(1 ) 2 2 }
4

T TI          (9) 

 

( )
a

a a a b i a
diL R i K e
dt

     
 

(10) 
 

a b
de K
dt


   
(11) 

 

( )r i m au K i  (12) 

(11)

θ signifies the angular displacement of the motor shaft 
and the ru  produced by motors, equation(12) denotes the 
torques produced by actuators motors and mK is the motor 
torque constant.
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In equation (13) ,b is the viscous coefficient of the motors.
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Equations (14) and (15), tK  and mT are the motor gain 
constant and motor time constant respectively.
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Equations (17) and (18) outline the nonlinear dynamics of 
the flexible satellite in the presence of actuators dynamics. In 
equation (16) ae is considered as control input. 

3- Attitude Control System Design
This section focuses on controller design. Fig.2 illustrates 

the configuration of the proposed hybrid controller. This 
diagram shows the integration of the Anti-Unwinding Sliding 
Mode Controller (AUSMC) with the Lyapunov Nonlinear 
Model Predictive Controller (LNMPC). In this block 
diagram, an arbitrary input is applied to the LNMPC, and the 
desired output is fed back to the input in order to minimize 
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Fig. 1. Flexible satellite structure model.
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the error to zero. Sections 3 is dedicated to the design of the 
controllers.

3- 1- Lyapunov Nonlinear Model Predictive Control Design
Lyapunov nonlinear model predictive control equations 

are derived according to [14]. Totally model predictive 
control is based on optimal control so for solving the optimal 
control problem we need a cost function. This function which 
is shown in(19), it optimizes dynamic system error in a finite 
prediction horizon and optimal control derivative vector will 
be computed, and first element of the vector is applied to 
the system. the predicted outputs are y hωσ ω 

  =   . Q  
and R  are the weighting matrices related to the trajectory 
error and control effort variation respectively. In NMPC by 
minimizing the quadratic cost function, the predicted output 
y  can be converge to it’s set point y  faster and smoother.
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As mentioned previously, one of the advantages of the 
MPC is to take constraints into account. Equations (20), (21), 
and (22) discuss these constraint limitations. In this paper, the 
control effortu  and variations in control effort u∆ are the 
system’s constraints.
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In Equation (23), the term Y represents the estimated 
output of the system. This term is determined by solving 

the optimization problem outlined in Equation (26). F  The 
steady states relevant to this problemG  are expressed here 
as well. The Toeplitz matrix, as described in Equation (29), 
is used to analyze the differences between past and future 
behaviors of the system over the finite prediction horizon pN
concerning variations in control effort.
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Equations (30) and (31) are denoted the predicted output 
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and control effort variations.
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The equations above have been used to solve the 
quadratic cost function in (26), and the optimization was 
performed using the active-set method in MATLAB. One 
of the advantages of this algorithm is its use of a candidate 
Lyapunov function in the matrixG , which allows for 
stability analysis to be integrated into the algorithm. It  assists 
to enhance the robustness of the controller. It is important to 
note that matrix G is the forced response and the matrix F
is the free response.

3- 2- Anti-Unwinding Sliding Mode Control Design
In this section anti-unwinding sliding mode controller 

is presented. This nonlinear controller is used due to 
guarantee  kinematics asymptotic stability[15]. Sliding 
mode is a nonlinear controller which employs a sliding 
surface to stabilize the steady states. One the common 
problems of sliding mode controller is chattering 
phenomenon. Chattering is a harmful event which occurs 
in control effort signal and it could damage actuators.to 
prevent it, some kind of sliding mode controller have been 
developed by researchers and it can be seen in many papers. 
Briefly, unwinding is a phenomenon that satellite to reach 
it’s desired attitude from an arbitrary point needs to rotate 
more than π  so anti-unwinding method makes satellite to 
keep this rotation less thanπ .  at first it is need to design 
a sliding surface S  and steady states should be in it. In 
equation (32) predicted angular velocity ω  and Modified 
Rodriguez parameters σ is put into the sliding surface. 
Termλ is a positive weighting constant and assume to be 
0.3 due to control the kinematics. 
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Equation (33) depicted the AUSMC control law (u ). equ ,
nu  are obtained by solving the (34) to (38).in nominal control 

law ( nu ), 1γ  is a positive constant and chosen to be 0.1, 2γ  
is acquired by (36).
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The following relations are presented to define the 
boundary conditions, and equation (38) is a positive-valued 
function. The term ε is a small positive value, and as it 
approaches zero, it improves anti-unwinding performance.
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The AUSMC algorithm is derived from the equations 
above and will help ensure that kinematics converges to zero 
while making controller signals as smooth as possible.

4- Stability Analysis
In this section the closed loop stability is proved by a 

candidate Lyapunov function. In this proof the candidate 
Lyapunov function is based on sliding surface in equation 
(32) 
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The candidate Lyapunov function is given as follows
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By taking a time derivative the equation (39) is yielded
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By substituting the equation (33) into the equation(40), 
equations(41) and (42) are obtained respectively.
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So in equation (43), the ( ) , ( ) 0V t V t ≤  are achieved and 
the closed loop system is asymptotically stable.

5- Simulation and Validation
This section presents the results of computer simulations 

conducted using MATLAB software. We compare the 
performance of the proposed hybrid controller in actively 
suppressing vibrations in flexible appendages, all the 
simulations have done under uncertainty and external 
disturbance. This comparison aims to evaluate its superiority 
over the algorithm’s performance. This section is divided 
into two subsections, in subsection 5.1 tuned controller 
gains which are obtained by trial and error are discussed and 
subsection 5.2 is related to the computer simulations. In all 
the simulations in the subsection 5.2 external disturbance and 
20 % of the flexible satellite moment of inertia as uncertainty 
are employed. Furthermore, the Matrix damping is considered 
as 0C =  to analyze the hybrid controller ability in order to 
neutralize the satellite vibration.

5- 1- Gain Tuning
 To ensure the expected performance of the designed 

controller, the controller’s gain must be adjusted rigorously. 
All performance parameters, including settling time, 
overshoot/undershoot, steady-state error, prediction horizon, 
and control horizon, should be considered. As mentioned in 

section 2, the prediction and control horizons are assumed 
10=N to be set, and the controller’s gains ,Q R are 

adjusted as (1500,1500,1500)=Q diag (10,10,10)=R diag
respectively. The gains for the anti-unwinding sliding 
mode controller discussed in section 3 are tuned as follows.

0.3=λ 1 0.1=γ 0.001=ε  The simulation time is 100=t s
set, and the sampling period time step is also specified

0.01=st . The parameters related to the appendage’s 
vibration and piezoelectric actuators are adjusted 

(0.7681,1.1038,1.8733)Ω =diag (0.2,0.2,0.2)=P diag
to account for the vibration frequency and the positive 
definite matrix associated with the piezoelectric actuators, 
respectively.

5- 2- Simulation Results
To enhance the clarity of the tracking performance 

and robustness of the controller, the diagrams below are 
provided. These graphs are generated based on specific initial 
conditions that mentioned in table 1.To introduce uncertainty 
into the algorithm, it is assumed that 20 percent of the inertial 
matrix for the body frame of the flexible satellite is affected. 
Parameters , ,φ θ ψ  denote the Euler angles, ω is the flexible 
satellite angular velocity, η  is the vibration displacement 
and it is related to the flexible appendage and σ  is the 
Rodriguez Parameters related to the kinematics equation. It 
is supposed that the satellite reach the set point y  from the 
given numerical conditions.

Table.2 represents the values of actuators parameters and 
it is based on actuators motors specifications.

LNMPC is unable to nullify vibration with low frequency, 
so it is merged AUSCM to tackle this problem. if LNMPC 
perform as a lowpass filter and just able to neutralize the high 
frequency the satellite attitude would be interrupted, Fig.2 
and Fig.3 are bode diagrams and are given to prove this claim.

The satellite’s inertia matrix, coupling matrix, and 
coupling matrix related to the flexible part are expressed as 
follows:

Table 1. Initial Conditions.Table 1. Initial Conditions  

Number Parameter  Initial Conditions 

1 
 

, ,    10 20 100
T

    

2     0 0 0 T  
3     0 0 0 T  
4     1.5 0.5 0.3 T  
5 maxu  10  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M. Salehipour et al., AUT J. Mech. Eng., 10(2) (2026) 211-230, DOI: 10.22060/ajme.2025.24218.6184

217

1 2 2( ) ( ) ( )V t S t S t S        (43) 
 

420.8 3.6 4.2
3.6 410.6 9.4
4.2 9.4 690.7

J
 

   
  

 

(44) 

 

2.62 0.007 0.003
0.001 0.124 2.73
0.001 0.437 0.051


 

    
   

 

(45) 

 

70.26 4.23 2.34
4.80 31.93 1.24
1.05 2.55 29.84

p
 

   
  

 

(46) 

 

0

0 0

0

cos( ) 1
2 cos( ) sin( )

sin( ) 1

t
d t t

t


 



 
    
  

 
 
 

(47) 

 

error    (48) 
 

_ econvergence rate e
t


 


 (49) 

 

80 40 40 10
12 8 4


 


 
(50) 

 

80 40 40 8
14 9 5


 


 
(51) 

 

0

487 15 1.2
14.9 177 7.3

1.2 7.3 404
J

 
   
   

 

 
(52) 

 

(44)

1 2 2( ) ( ) ( )V t S t S t S        (43) 
 

420.8 3.6 4.2
3.6 410.6 9.4
4.2 9.4 690.7

J
 

   
  

 

(44) 

 

2.62 0.007 0.003
0.001 0.124 2.73
0.001 0.437 0.051


 

    
   

 

(45) 

 

70.26 4.23 2.34
4.80 31.93 1.24
1.05 2.55 29.84

p
 

   
  

 

(46) 

 

0

0 0

0

cos( ) 1
2 cos( ) sin( )

sin( ) 1

t
d t t

t


 



 
    
  

 
 
 

(47) 

 

error    (48) 
 

_ econvergence rate e
t


 


 (49) 

 

80 40 40 10
12 8 4


 


 
(50) 

 

80 40 40 8
14 9 5


 


 
(51) 

 

0

487 15 1.2
14.9 177 7.3

1.2 7.3 404
J

 
   
   

 

 
(52) 

 

(45)

1 2 2( ) ( ) ( )V t S t S t S        (43) 
 

420.8 3.6 4.2
3.6 410.6 9.4
4.2 9.4 690.7

J
 

   
  

 

(44) 

 

2.62 0.007 0.003
0.001 0.124 2.73
0.001 0.437 0.051


 

    
   

 

(45) 

 

70.26 4.23 2.34
4.80 31.93 1.24
1.05 2.55 29.84

p
 

   
  

 

(46) 

 

0

0 0

0

cos( ) 1
2 cos( ) sin( )

sin( ) 1

t
d t t

t


 



 
    
  

 
 
 

(47) 

 

error    (48) 
 

_ econvergence rate e
t


 


 (49) 

 

80 40 40 10
12 8 4


 


 
(50) 

 

80 40 40 8
14 9 5


 


 
(51) 

 

0

487 15 1.2
14.9 177 7.3

1.2 7.3 404
J

 
   
   

 

 
(52) 

 

(46)

By assuming that flexible satellite is placed 500 Km 

far from the earth surface the external disturbance that  is 
employed to its actuators is[16].
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Where 0ω  is the orbital angular velocity and it is considered 
as 0.0011 rad/s and the amplitude of the disturbance is 2.

Fig.3 illustrates the bode diagram related to LNMPC 
active vibration suppression. We have 6 3 18× =  graphs 
related to 3 inputs and 6 outputs (Euler angles an angular 
velocities). According to the diagram as frequency increases, 
the slope of the diagram converges to −∞  it means that the 
controller is nullifying the high frequency and just pass the 
low frequency. In Fig.4 exactly the opposite happens, in low 

Table 2. Actuators specifications.
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Fig.3. Bode diagram during vibration suppression using the LNMPC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Bode diagram during vibration suppression using the LNMPC.
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frequency, the frequency that is given in subsection 5.1 the 
slope remains in negative side or near zero and it is declared 
that the hybrid controller is nullifying the vibration with low 
frequency as well.

In the rest of the paper, the figures related to the computer 
simulations are given. In all simulations the behavior 
of the composite controller during entering disturbance 
into the actuators are analyzed. Fig.5 is the satellite Euler 
angles which are reached to the set point from the arbitrary 
conditions. Fig.6 is the control effort signals related to all 

three reaction wheels, Fig.7 is the Rodriguez parameters, 
Fig.8 is the flexible appendage’s vibration displacements, 
Fig.9 is flexible appendage’s vibration velocities, Fig.10 is 
satellite angular momentums and they are properly steered to 
zero after maneuver.Fig.11 is the satellite angular velocities, 
Fig.12 is the sliding surfaces and they are converged to zero 
as well, Fig.13 is the piezoelectric control input voltage 
and Fig.14 is the reaction wheels motors angular velocities 
and they are similar to reaction wheels angular momentum 
converged to zero. It is essential to stop actuators after each 

 

Fig.4. Bode diagram during vibration suppression using the Hybrid Controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Bode diagram during vibration suppression using the Hybrid Controller.

 

Fig.5. Flexible satellite Euler angles ( , ,   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Flexible satellite Euler angles ( , ,φ θ ψ ).
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maneuver to prevent over consuming and save energy for the 
next maneuver.

Table 3. discussed about the behavior of the system 
after employing external disturbance. The Euler angels and 
Tip deflection settling times are raised, but it is not a quite 
different and it is a reason that the hybrid controller is robust 
enough to handle disturbance with high amplitude. The main 
reason that this controller is considered as a robust NMPC is 
the corresponding Toeplitz matrix that contains the nonlinear 
dynamics of the flexible satellite so it is able to deal with 
uncertainty and disturbance properly.

Fig.15 depicts the Euler angles error signals comparison 

in two different states, with and without employing external 
disturbance. Equation (48) is the Euler angles error and 
equation(49) gives the convergent rate.

In equation (48) the error of the Euler angles is denoted, 
where [ ]φ θ ψΘ = .
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Fig.6. Control effort signals ( , ,x y zu u u )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Control effort signals ( , ,x y zu u u ).

 

Fig.7. Modified Rodriguez Parameters ( , ,x y z   ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Modified Rodriguez Parameters ( , ,x y zσ σ σ ).
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Fig.8.Vibration displacements ( 1 2 3, ,   ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Vibration displacements ( 1 2 3, ,η η η ).

 

Fig.9. Vibration velocities ( 1 2 3, ,   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Vibration velocities ( 1 2 3, ,η η η   ).
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Fig.10. Reaction wheels angular momentums ( , ,
x y z

h h h   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Reaction wheels angular momentums ( , ,
x y z

h h hω ω ω ).

 

Fig.11. Flexible satellite angular velocities ( , ,x y z   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Flexible satellite angular velocities ( , ,x y zω ω ω ).
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Fig.12. Sliding surfaces ( , ,x y zS S S )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Sliding surfaces ( , ,x y zS S S ).

 

Fig.13. Piezoelectric voltage inputs ( , ,
x y zp P Pu u u )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Piezoelectric voltage inputs ( , ,
x y zp P Pu u u ). 
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Equation (50) and (51) are convergent rate computation, 
with and without external disturbance respectively.

By assuming two value on the diagram, 80 and 40 the 
convergence rate is calculated as follows
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The convergent rate by employing the external disturbance 
is decreased, according to the Fig.5 after employing external 
disturbance, the settling time increased so it is denoted that 

the hybrid controller is robust but increasing in settling time 
is common. 

5- 3- Fact Checking
In this subsection, a similar paper is selected to compare 

with the hybrid controller in this paper [2].  The hybrid 
controller that is used is merging linear MPC and terminal 
sliding mode controller. To prove our composite controller 
feasibility, the selected paper data is used into the composite 
controller in this paper. The flexible satellite moment of 
inertia and coupling matrix are given as follows [17].

1 2 2( ) ( ) ( )V t S t S t S        (43) 
 

420.8 3.6 4.2
3.6 410.6 9.4
4.2 9.4 690.7

J
 

   
  

 

(44) 

 

2.62 0.007 0.003
0.001 0.124 2.73
0.001 0.437 0.051


 

    
   

 

(45) 

 

70.26 4.23 2.34
4.80 31.93 1.24
1.05 2.55 29.84

p
 

   
  

 

(46) 
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Fig.14. Reaction wheels motors angular velocities ( , ,x y z   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Reaction wheels motors angular velocities ( , ,x y zΩ Ω Ω ) .

Table 3. Hybrid controller characteristics in different methods.
Table 3. hybrid controller characteristics in different methods 

 

Method 
name 

Euler angles settling 
time (s) 

Max 
Control 
effort 
(N. m) 

Max vibration displacement vibration 
displacement settling 

time (s) 

No 
external 

disturbance 

20, 20, 22      10  1 2 30.0008, 0.003, 0.003      1 2 315, 50, 50      

Under 
external 

disturbance 

25, 25, 30      10  1 2 30.0008, 0.003, 0.003      1 2 320, 55, 55      
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1 0.1 0.1
0.5 0.1 0.01

1 0.3 0.01


 
   
  

 

 
 

(53) 

 

 

(53)

Initial parameters including, gains, prediction horizon 
and initial angles are the same as Table 1. Fig.16 to 25 are 
illustrated and compared each other.

Fig.16 is the comparison of  the Euler angles of two 
different methods, and it is understood from the graph that the 

 

 

Fig.15. Euler angles error signals diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Euler angles error signals diagram.

controller in this study has lower overshoot and undershoot 
rather than another controller, Fig.17 is the control effort 
comparison and Fig 18 and 19 are related to satellite angular 
velocity and angular momentum respectively.Fig.20 and 
Fig.21 are related to the vibration displacement and velocity 
respectively, Fig.22 denotes the piezoelectric actuators input 
control, Fig.23 is Rodiguez parameter, Fig.24 is sliding 
surfaces and they are converged to zero properly and the last 
one, Fig.25 is reaction wheels motors angular velocity and 
they are converged to zero and it means the reaction wheels 
after completing maneuver are rested. 

 

Fig.16. Flexible satellite Euler angles comparison ( , ,   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Flexible satellite Euler angles comparison ( , ,φ θ ψ ).



M. Salehipour et al., AUT J. Mech. Eng., 10(2) (2026) 211-230, DOI: 10.22060/ajme.2025.24218.6184

225

 

Fig.17. Control effort signals comparison ( , ,x y zu u u )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Control effort signals comparison ( , ,x y zu u u ).

 

Fig.18. Flexible satellite angular velocities comparison ( , ,x y z   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Flexible satellite angular velocities comparison ( , ,x y zω ω ω ).
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Fig.19. satellite angular momentums comparison ( , ,
x y z

h h h   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Satellite angular momentums comparison ( , ,
x y z

h h hω ω ω ).

 

Fig.20.Vibration displacements comparison ( 1 2 3, ,   ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Vibration displacements comparison ( 1 2 3, ,η η η ).
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Fig.21. Vibration velocities  comparison ( 1 2 3, ,   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Vibration velocities comparison ( 1 2 3, ,η η η   ).

 

Fig.22. Piezoelectric voltage inputs comparison ( , ,
x y zp P Pu u u )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Piezoelectric voltage inputs comparison ( , ,
x y zp P Pu u u ).
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Fig.23. Modified Rodriguez Parameters comparison ( , ,x y z   ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23. Modified Rodriguez Parameters comparison ( , ,x y zσ σ σ ).

 

Fig.24. Sliding surfaces comparison ( , ,x y zS S S )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. Sliding surfaces comparison ( , ,x y zS S S ).
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According to the Table 4, the composite controller in this 
paper has performed quite well and the Euler angles could 
reach their setpoints in a shorter time.

6- Conclusion
This paper aims to clarify the effectiveness of the 

Lyapunov Nonlinear Model Predictive Controller 
(LNMPC) and its performance when combined with the 
Anti -Unwinding Sliding Mode Control (AUSMC). The 
active-set optimization algorithm, known for its speed 
and accuracy, enhances the usability of this approach, as 

demonstrated by simulation results. This combination 
effectively addresses uncertainties and external disturbance, 
resulting in a longer settling time but still robustness 
against them. The robustness of the LNMPC is particularly 
beneficial for managing low-frequency vibrations, which is 
a significant aspect reflected in the results. Since satellite 
vibrations typically occur within a low-frequency range, 
relying solely on LNMPC may not effectively mitigate these 
vibrations. Therefore, integrating LNMPC with AUSMC 
proves advantageous, as it leverages the strengths of both 
controllers.

 

Fig.25. Reaction wheels motors angular velocities comparison ( , ,x y z   )  

 

 

 

 

 

 

 

 

 

 

Fig. 25. Reaction wheels motors angular velocities comparison ( , ,x y zΩ Ω Ω ).

Table 4. Controllers comparison.
Table 4. Controllers comparison 

 

Method 
name 

Euler angles settling 
time (s) 

Max 
Control 
effort 
(N. m) 

Max vibration displacement vibration 
displacement settling 

time (s) 

Controller 
in this 
study 

20, 15, 20      10  1 2 30.001, 0.0025, 0.003      1 2 315, 50, 50      

Controller 
in the 

selected 
paper 

25, 20, 25      10  1 2 30.002, 0.002, 0.0005      1 2 340, 20, 10      
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