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ABSTRACT: This study examines transient natural convection (NC) heat transfer (HT) and entropy 
generation (Egen) in a square enclosure containing thermally stratified water. The model considers 
uniform heating at the bottom wall, stratified vertical walls, and a cooled top boundary. Governing 
equations are addressed through the finite volume (FV) method, with simulations performed across 
a range of Rayleigh numbers (Ra) from 100 to 5 × 106, a fixed Prandtl number (Pr) of 7.01, for water. 
Various physical quantities were analyzed across the spectrum of Ra to capture the complex dynamics of 
convective flow. This encompasses streamline and isotherm plots, the temporal evolution of temperature, 
phase-space representations via limit cycles and limit points, along with spectral analysis, including the 
average Nusselt number (Nu), local entropy generation (El), and local Bejan number (Bel). The results 
reveal successive bifurcations with increasing Ra: a pitchfork bifurcation (Ra = 8 × 103–104) leads to 
symmetry breaking, a Hopf bifurcation (Ra = 2 × 105–3 × 105) induces periodic oscillations, and chaotic 
flow emerges at Ra = 106–2 × 106. The average Nusselt number at the bottom wall increases from 5.84 
for Ra = 2 × 105 to 15.87 for Ra = 2 × 106, corresponding to a 171.75% enhancement in the HT. The 
numerical framework was validated by comparing it with existing numerical literature, confirming the 
results’ reliability. 
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1- Introduction
Natural convection (NC) is induced by buoyancy forces 

arising from density gradients generated by temperature 
variations in a gravitational field. This phenomenon plays 
a crucial role in numerous engineering applications such as 
heat exchangers, building heating and ventilation systems, 
electronic component cooling, solar energy collectors, 
and thermal energy storage systems. Buoyancy-induced 
flows have been extensively studied across a wide range 
of cavity geometries and boundary conditions, employing 
both analytical and numerical approaches to examine the 
associated heat transfer (HT) and fluid flow behaviors.

Stratified fluids play a fundamental role in understanding 
and predicting phenomena in oceans, atmosphere, industrial 
systems, and various other domains. Their layered nature 
influences energy transfer, stability, mixing, and dynamics, 
making them vital in both scientific research and practical 
applications. Angirasa and Srinivasan [1] studied NC in 
thermally stratified, low-porosity porous media, reporting 
limited sensitivity of flow reversal to stratification. Chen 
and Eichhorn [2] explored NC from a uniform thermal plate 
in a stratified fluid kept in a cubical tank, emphasizing the 
influence of vertical thermal gradients. Tripathi and Nath 

[3] numerically investigated NC in a thermally stratified 
fluid adjacent to a vertical uniform thermal wall. Their 
results showed a pronounced sensitivity of HT to both the 
wall temperature and the degree of ambient stratification, 
emphasizing the importance of buoyancy effects in layered 
environments. Rahaman et al. [4] conducted a comparative 
investigation of transient thermal convection in a stratified 
trapezoidal enclosure filled with air and water, with the 
upper boundary maintained at a uniformly low temperature. 
Their study emphasized the influence of fluid flow and HT 
mechanisms for the two different fluids. In a subsequent 
work, Rahaman et al. [5] analyzed the transition from laminar 
to turbulent regimes in a trapezoidal enclosure featuring a 
uniformly heated bottom wall, a cooled top boundary, and 
thermally insulated sloped sidewalls. Their findings revealed 
that, with increasing Ra, the system underwent a transition 
toward chaotic HT behavior, highlighting the sensitivity 
of NC to thermal boundary intensities and geometrical 
configurations.

Natural convection within enclosures plays a vital 
role in an extensive range of engineering and geophysical 
applications. The geometry of the enclosure, thermal boundary 
conditions, and fluid properties are critical parameters 
governing convective HT and flow dynamics. Numerous 
studies have examined NC in non-rectangular and inclined 
geometries to elucidate the complex interplay of these *Corresponding author’s email: mahfuz0809@gmail.com
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factors. For instance, Bhowmick et al. [6] and Wang et al. [7] 
analyzed V-shaped cavities, revealing flow bifurcations and 
identifying critical HT characteristics. Similarly, Patterson 
and Imberger [8] showed that initial flow states in rectangular 
enclosures are highly sensitive to Ra and aspect ratio. Lee 
[9] extended this understanding through numerical studies 
on tilted cavities, demonstrating how variations in wall 
inclination and aspect ratio influence the Nusselt number 
and flow regimes. Investigations by Ma and Xu [10], Varol 
et al. [11], and Saha [12] further explored HT enhancement 
mechanisms, including fin placement, porous media, and 
transient heating. Additional studies by Boufia and Daube 
[13], Xu et al. [14], and Iyican et al. [15] have revealed how 
localized heating and internal structures affect convective 
behavior. Rahman et al. [16] numerically examined MHD free 
convection over a vertical porous plate in a rotating system 
with an induced magnetic field, showing that magnetic and 
rotational effects suppress primary velocity while enhancing 
secondary velocity, and that stronger magnetic fields increase 
temperature, concentration, and associated transport rates. 
Natarajan [17] employed numerical methods to simulate 
NC in a trapezoidal cavity with non-uniform wall heating, 
capturing the complexity of flow induced by geometric and 
thermal asymmetry. Collectively, these studies highlight the 
intricate dependence of NC on enclosure configuration and 
boundary conditions, underscoring the need for continued 
investigation into such systems.

The square cavity serves as a fundamental model for 
studying NC due to its geometric simplicity and well-defined 
boundary conditions, rendering it ideal for both theoretical 
analysis and numerical validation. It offers a controlled 
setting for investigating complex heat and fluid flow 
phenomena, including boundary layer development, thermal 
stratification, flow instabilities, and transitions from laminar 
to turbulent regimes. Davis [18] initiated foundational work 
on two-dimensional NC with differentially heated vertical 
walls, while Basak et al. [19] extended the analysis to a cavity 
with a heated base and isothermal sidewalls, elucidating key 
flow structures under laminar conditions. Raji et al. [20] 
examined configurations involving inclined insulated walls 
and identified strong sensitivity of flow behavior to Ra 
and boundary orientation. Non-Boussinesq effects in low-
Prandtl-number fluids were explored by Pesso and Piva [21], 
who emphasized the influence of density variation on heat 
transport mechanisms. Kouroudis et al. [22] explored the effect 
of constant heat fluxes on thermal stratification in the cavity, 
revealing intricate circulation patterns. Further complexity 
was introduced by Deng [23], who analyzed the effects of 
source-sink distributions along cavity walls, highlighting the 
role of spatial thermal forcing on flow structure. Barakos 
et al. [24] conducted high-fidelity simulations over a wide 
range of Ra, validating numerical accuracy and capturing the 
transition from laminar to turbulent regimes. Collectively, 
these studies reinforce the square cavity’s role as a benchmark 
configuration for advancing understanding of NC dynamics 
under controlled conditions. Recently, Bawazeer and Alsoufi 
[25] examined the effect of Ra and Pr on HT and flow patterns 

within a square cavity featuring adiabatic horizontal walls 
and vertically oriented heated and cooled walls.

Entropy generation analysis has emerged as a vital 
framework for assessing the thermodynamic efficiency 
of convective HT systems. Rooted in the second law of 
thermodynamics, this approach enables the quantification 
of irreversibilities arising from thermal gradients and 
viscous dissipation, thereby offering a pathway for system 
optimization. Bejan [26] pioneered this methodology by 
establishing a theoretical foundation for entropy-based 
performance evaluation in HT processes, emphasizing 
constraints related to size, time, and efficiency. Subsequent 
studies have extended this framework to complex geometries 
and flow conditions. Biswal and Basak [27] analyzed Egen 
in curved-walled enclosures, identifying peak thermal 
irreversibility near concave wall mid-heights, with minor 
contributions from fluid friction. Bouabid et al. [28] 
demonstrated that increasing aspect ratios in inclined 
rectangular cavities at high Grashof numbers amplify total 
Egen. Oliveski et al. [29] reported strong thermal-hydrodynamic 
coupling in vertically stratified rectangular enclosures, where 
heat and flow fields jointly influence irreversibility. In 
trapezoidal configurations, Rahaman et al. [30, 31] showed 
that higher Ra values elevate entropy production and degrade 
energy efficiency. Studies by Singh [32] and Ilis et al. [33] 
further underscored the roles of wall orientation and aspect 
ratio in modulating irreversibility distribution. Sheremet et 
al. [34] introduced nanofluids and particle effects, such as 
Brownian motion and thermophoresis, revealing increased 
entropy generation with higher thermal gradients. Saboj [35] 
explored entropy mechanisms in octagonal cavities with 
embedded cold elements, while Shavik [36] found that cavity 
inclination predominantly affects fluid friction irreversibility. 

Although NC within square cavities has been extensively 
investigated, limited attention has been devoted to the 
combined effect of a uniformly heated bottom wall, a cooled 
top wall, and linearly stratified vertical walls, particularly 
in the context of transient bifurcations and Egen. Thermal 
stratification along the vertical walls of a square cavity 
arises from temperature gradients induced by differential 
heating, resulting in stratified fluid motion and buoyancy-
driven convection. This phenomenon has important practical 
applications in engineering and environmental systems, 
including building and room ventilation, solar energy storage 
systems, and environmental and atmospheric studies. To the 
best of the authors’ knowledge, the present study is among 
the first to provide a comprehensive investigation of the 
sequence of pitchfork and Hopf bifurcations, the transition to 
chaos, and the evolution of Egen under this configuration. The 
primary objective is to explore the effect of the Ra on flow 
dynamics and thermodynamic irreversibility, with particular 
emphasis on identifying critical Ra values that signify 
transitions such as pitchfork bifurcation, Hopf bifurcation, 
and the onset of chaotic behavior. A comprehensive analysis 
of HT and Egen is performed to assess its variation across 
different flow regimes and its implications for enhancing 
the thermodynamic performance of convective systems. To 
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confirm the reliability of the findings, the present numerical 
outcomes are validated through comparison with a previously 
published study.

2- Methodology
This research is mainly intended to investigate the 

unsteady NC heat transfer, Egen within a square cavity 
applying a two-dimensional numerical simulation approach. 
For laminar flow, a two-dimensional approach is sufficient 
to capture the essential fluid flow characteristics, as three-
dimensional effects do not lead to significant variations in this 
configuration. Fig. 1 illustrates the schematic of the physical 
domain along with the corresponding boundary conditions. 
The bottom wall of the cavity is maintained at a uniform high 
temperature, represented as Th, which is higher compared 
to the temperature of the top wall, labeled Tc. The vertical 
sidewalls exhibit a linear thermal stratification, denoted by Ti. 
The fluid in the cavity specified by a Pr of 7.01 for initially 
stratified water. The thermo physical properties of stratified 
air are presented in Table 1. All enclosure boundaries are 
assumed to be stationary and subject to no-slip conditions.

In a square enclosure, the NC flow of stratified water 
is investigated using a 2D model governed by the coupled 
Navier–Stokes and energy equations, formulated under the 
Boussinesq approximation. The dimensional governing 
equations describe the evaluation of NC flow in the cavity as 
(refer to Rahaman et al. [37]):

0,U V
X Y
 

 
 

 

 

(1) 

2 2

2 2
1 ,U U U P U UU V

t X Y X X Y



      

            
 

 

(2) 

 
2 2

02 2
1 ,

V V VU V
t X Y

P V V g T T
X X Y

 


  
  

  
   

        

 

 

(3) 

2 2

2 2 .T T T T TU V
t X Y X Y


     

         
 

 

(4) 

 

Top cold wall: , 0,
Bottom heated wall: , 0,
Vertical stratified walls: , 0.

c

h

i

T T U V
T T U V

T T U V

  
   
   

     (5) 

 

2

2 2

, , , ,
Ra Ra

Ra, , .
Ra h c

X Y UH VHx y u v
Y H

T TPH tp
T T H

 
 




   


  



 (6) 

 

  3

Pr and Ra .h cg T T H
 


     (7) 

 

0,u v
x y
 

 
 

 (8) 

2 2

2 2
Pr ,
Ra

u u u p u uu v
x y x x y

      
            

 

 

(9) 

2 2

2 2
Pr Pr ,
Ra

v v v p v vu v
x y y x y




      
             

 (10) 

   (1)
0,U V

X Y
 

 
 

 

 

(1) 

2 2

2 2
1 ,U U U P U UU V

t X Y X X Y



      

            
 

 

(2) 

 
2 2

02 2
1 ,

V V VU V
t X Y

P V V g T T
X X Y

 


  
  

  
   

        

 

 

(3) 

2 2

2 2 .T T T T TU V
t X Y X Y


     

         
 

 

(4) 

 

Top cold wall: , 0,
Bottom heated wall: , 0,
Vertical stratified walls: , 0.

c

h

i

T T U V
T T U V

T T U V

  
   
   

     (5) 

 

2

2 2

, , , ,
Ra Ra

Ra, , .
Ra h c

X Y UH VHx y u v
Y H

T TPH tp
T T H

 
 




   


  



 (6) 

 

  3

Pr and Ra .h cg T T H
 


     (7) 

 

0,u v
x y
 

 
 

 (8) 

2 2

2 2
Pr ,
Ra

u u u p u uu v
x y x x y

      
            

 

 

(9) 

2 2

2 2
Pr Pr ,
Ra

v v v p v vu v
x y y x y




      
             

 (10) 

   (2)

0,U V
X Y
 

 
 

 

 

(1) 

2 2

2 2
1 ,U U U P U UU V

t X Y X X Y



      

            
 

 

(2) 

 
2 2

02 2
1 ,

V V VU V
t X Y

P V V g T T
X X Y

 


  
  

  
   

        

 

 

(3) 

2 2

2 2 .T T T T TU V
t X Y X Y


     

         
 

 

(4) 

 

Top cold wall: , 0,
Bottom heated wall: , 0,
Vertical stratified walls: , 0.

c

h

i

T T U V
T T U V

T T U V

  
   
   

     (5) 

 

2

2 2

, , , ,
Ra Ra

Ra, , .
Ra h c

X Y UH VHx y u v
Y H

T TPH tp
T T H

 
 




   


  



 (6) 

 

  3

Pr and Ra .h cg T T H
 


     (7) 

 

0,u v
x y
 

 
 

 (8) 

2 2

2 2
Pr ,
Ra

u u u p u uu v
x y x x y

      
            

 

 

(9) 

2 2

2 2
Pr Pr ,
Ra

v v v p v vu v
x y y x y




      
             

 (10) 

   (3)

0,U V
X Y
 

 
 

 

 

(1) 

2 2

2 2
1 ,U U U P U UU V

t X Y X X Y



      

            
 

 

(2) 

 
2 2

02 2
1 ,

V V VU V
t X Y

P V V g T T
X X Y

 


  
  

  
   

        

 

 

(3) 

2 2

2 2 .T T T T TU V
t X Y X Y


     

         
 

 

(4) 

 

Top cold wall: , 0,
Bottom heated wall: , 0,
Vertical stratified walls: , 0.

c

h

i

T T U V
T T U V

T T U V

  
   
   

     (5) 

 

2

2 2

, , , ,
Ra Ra

Ra, , .
Ra h c

X Y UH VHx y u v
Y H

T TPH tp
T T H

 
 




   


  



 (6) 

 

  3

Pr and Ra .h cg T T H
 


     (7) 

 

0,u v
x y
 

 
 

 (8) 

2 2

2 2
Pr ,
Ra

u u u p u uu v
x y x x y

      
            

 

 

(9) 

2 2

2 2
Pr Pr ,
Ra

v v v p v vu v
x y y x y




      
             

 (10) 

   (4)

Dimensional boundary condition are as follows:

0,U V
X Y
 

 
 

 

 

(1) 

2 2

2 2
1 ,U U U P U UU V

t X Y X X Y



      

            
 

 

(2) 

 
2 2

02 2
1 ,

V V VU V
t X Y

P V V g T T
X X Y

 


  
  

  
   

        

 

 

(3) 

2 2

2 2 .T T T T TU V
t X Y X Y


     

         
 

 

(4) 

 

Top cold wall: , 0,
Bottom heated wall: , 0,
Vertical stratified walls: , 0.

c

h

i

T T U V
T T U V

T T U V

  
   
   

     (5) 

 

2

2 2

, , , ,
Ra Ra

Ra, , .
Ra h c

X Y UH VHx y u v
Y H

T TPH tp
T T H

 
 




   


  



 (6) 

 

  3

Pr and Ra .h cg T T H
 


     (7) 

 

0,u v
x y
 

 
 

 (8) 

2 2

2 2
Pr ,
Ra

u u u p u uu v
x y x x y

      
            

 

 

(9) 

2 2

2 2
Pr Pr ,
Ra

v v v p v vu v
x y y x y




      
             

 (10) 

   (5)

The following are the normalized variables that were 
utilized:

0,U V
X Y
 

 
 

 

 

(1) 

2 2

2 2
1 ,U U U P U UU V

t X Y X X Y



      

            
 

 

(2) 

 
2 2

02 2
1 ,

V V VU V
t X Y

P V V g T T
X X Y

 


  
  

  
   

        

 

 

(3) 

2 2

2 2 .T T T T TU V
t X Y X Y


     

         
 

 

(4) 

 

Top cold wall: , 0,
Bottom heated wall: , 0,
Vertical stratified walls: , 0.

c

h

i

T T U V
T T U V

T T U V

  
   
   

     (5) 

 

2

2 2

, , , ,
Ra Ra

Ra, , .
Ra h c

X Y UH VHx y u v
Y H

T TPH tp
T T H

 
 




   


  



 (6) 

 

  3

Pr and Ra .h cg T T H
 


     (7) 

 

0,u v
x y
 

 
 

 (8) 

2 2

2 2
Pr ,
Ra

u u u p u uu v
x y x x y

      
            

 

 

(9) 

2 2

2 2
Pr Pr ,
Ra

v v v p v vu v
x y y x y




      
             

 (10) 

   (6)

Two results controlling parameters; Prandtl number (Pr) 
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The normalized form of Eqs. (1) to (4) becomes (refer to 
Rahaman et al. [38]):
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Fig. 1. Physical domain and normalized boundary conditions, indicating key points 𝑃𝑃1(0, 0.2), 

𝑃𝑃2(0, 0.5), 𝑃𝑃3(0.6, 0.3), and 𝑃𝑃4(-0.6, 0.3) utilized in the resulting figures. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Physical domain and normalized boundary con-
ditions, indicating key points P1(0, 0.2), P2(0, 0.5), P3(0.6, 

0.3), and P4(-0.6, 0.3) utilized in the resulting figures.



Md. Nayem Hossain et al., AUT J. Mech. Eng., 10(2) (2026) 153-166, DOI: 10.22060/ajme.2025.24319.6190

156

2 2

2 2
1 .
Ra

u v
x y x y

    


     
         

 (11) 

 

0,at the top wall
1, 0,at the bottom wall
1 , 0,at the vertical walls.

c

h

i

u v
u v
y u v





  
   
    

 (12) 

 

1 1

0 0

1 1and .h vNu dx Nu dy
l y l x

  
 

    (13) 

 

22

.htE
x y
           

 (14) 

 
2 22

2 .ff
u v u vE
x y y x


                              

 
(15) 

 

2

.T k
L T




     
 (16) 

 

.l ht ffE E E   (17) 

 

.ht
l

ht ff

EBe
E E




 (18) 

 

 
3 8

1 4 Ra32 2 .
Prk 


   
 

 (19) 

 

 

(11)

where, u, v, x, y, p, τ and θ denote the normalized forms of 
U, V, X, Y, P, t and T, respectively.  

The following are the boundary conditions in normalized 
form:
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The following equation defines the average Nusselt number 
on the horizontal walls, denoted as Nuh and on the vertical 
walls, denoted as Nuv (refer to Rahaman et al. [38, 39]):
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In a NC system, thermodynamics irreversibility arises 
primarily from two mechanisms: HT and fluid friction (FF). 
Based on linear transport theory, the normalized local Egen 
corresponding to these processes can be expressed as follows 
(refer to [30, 31] for more details):
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where Eht and Eff denote the local Egen resulting from the 
HT and FF. In Eq. (15), ψ  is referred to as the irreversibility 
distribution ratio, which is defined as:
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The local Egen in the cavity, represented as El, define as the 
sum of Eht and Eff (refer to Rahaman et al. [30]):
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The local Bejan number Bel is defined as follows (see 
Rahaman et al. [30]):
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2- 1- Numerical Model
In this study, the finite volume (FV) method based 

ANSYS Fluent 17.0 software was employed to solve 
the governing Eqs. (8) to (11), along with the boundary 
conditions specified in Eq. (12) (refer to Rahaman et 
al. [30, 31], for details). To interaction of the pressure-
velocity coupling, the SIMPLE (Semi-Implicit Method 
for Pressure-Linked Equations) method is employed. The 
viscous components are approximated through a second-
order central differencing method, whereas a third-order 
QUICK (Quadratic Upstream Interpolation for Convective 
Kinematics) scheme is utilized for the advection terms. 
A non-uniform rectangular mesh structure is utilized to 
improve spatial accuracy in the numerical domain. Under-
relaxation factors are also used to solve the discretized 
governing equations to maintain the stability of the iterative 
process, as described in the reference (refer to Rahaman et 
al. [37, 38]). The unstable terms in temporal discretization 
are addressed using a second-order accurate implicit time 
integration technique, consistent with the approaches 
outlined by Patterson and Imberger [8]. The convergence 
requirements are rigorously established, with residuals for 
continuity, momentum, and energy equations fixed at 10-5  to 
guarantee solution precision.

Table 1. Thermo physical properties of fluid (refer to Rahaman et al. [30]).Table 1. Thermo physical properties of fluid (refer to Rahaman et al. [30]). 
 

Property (unit) Stratified fluid (water) 

Density, ρ (kg/m3) 1.177 

Specific heat, Cp (J/kg K) 1012 

Viscosity, μ (kg/m s) 0.000018 

Thermal conductivity, k (W/m K) 0.00257887 
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2- 2- Grid and Time Step Dependent Tests
The grid resolution used in the computational domain 

plays a crucial role in determining the stability and accuracy 
of numerical results. To measure the sensitivity to grid size 
and time step, a comparative analysis was performed for the 
maximum Ra, under the hypothesis that the grid and time 
step optimized for this extreme Ra would also be adequate 
for scenarios with smaller Ra values. For this purpose, three 
symmetric grid configurations (350 × 350, 400 × 400, and 
450 × 450) and two distinct time steps (0.01 and 0.005) were 
selected for evaluation. Fig. 2 presents the TTS at point P1 (0, 
0.2) obtained using different grids and time steps for Ra = 5 
× 106. The recorded temperatures, derived from the various 
grids and time steps, show consistency during the initial 
period and slight divergence in the later stages.

Table 2 illustrates the variation in average temperature at 
the fully developed (FDS) flow regime for various grids size 
and time steps to assess grid independence test. A significant 
disparity of around 0.87% was seen between the simulations 
utilizing the coarsest grid 350 × 350 and the finest grid 400 
× 400. The disparity in average temperature between the 
two finer meshes 400 × 400 and 450 × 450 was modest, 
approximately 0.29%. Following this analysis, a mesh 
resolution of 400 × 400 and a time increment of 0.001 were 

chosen to ensure computational accuracy and efficiency for 
all subsequent simulations.

In this research, the normalized dissipative time scale 
computed using the following equation (refer to Rahaman et 
al. [31] for details):
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Here, λk = 0.02204 for Ra = 5 × 106; so, the normalized 
time steps of 0.005 and 0.01 are selected for the comparison.

2- 3- Model Validation
Model validation is a critical component of any numerical 

investigation to confirm the accuracy and credibility of the 
results. In this research, the comparison was done explicitly 
against the numerical data presented by Basak et al. [19], 
who utilized the finite element method to examine laminar 
NC heat transport in a square cavity. In their study, the lower 
boundary of the cavity was uniformly heated, while vertical 
walls were maintained at a uniform low temperature. The 
upper wall, conversely, was thermally insulated. To ensure 
consistency, the comparison was conducted using non-

 
Fig. 2. Temperature time series at P1 (0, 0.2) for Ra = 5 × 106 with different grids and time 

steps. 
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Fig. 2. Temperature time series at P1 (0, 0.2) for Ra = 5 × 106 with different grids and time steps.

Table 1. Temperature at P1 (0, 0.2) using different grids and time steps.

 

Table 2. Temperature at P1 (0, 0.2) using different grids and time steps 
 

Grids and time steps Average temperature Variance 

350 × 350 and ∆τ = 0.01 0.5142 0.87% 

400 × 400 and ∆τ = 0.01 0.5187 - 

400 × 400 and ∆τ = 0.005 0.5198 0.21% 

450 × 450 and ∆τ = 0.01 0.5202 0.29% 
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dimensional characteristics, specifically a Ra of 105 and a 
Prandtl number of 10. Fig. 3 illustrates that the temperature 
contour patterns derived from the current finite volume-based 
simulation closely align with those of Basak et al. [19], hence 
confirming the accuracy and dependability of the established 
computational model.

3- Results and Discussions
The numerical approach employed in this study has been 

validated and subsequently utilized to investigate NC, HT, 
and Egen within a thermally stratified square enclosure. The 
cavity configuration consists of a uniformly heated bottom 
wall, a cooled top wall, and thermally stratified vertical 
sidewalls. A comprehensive series of two-dimensional 
simulations has been conducted across a broad range of 
Ra, spanning from 100 to 5 × 106, with a fixed Pr of 7.01. 
As the Ra increases, the system undergoes a sequence of 
bifurcations. These bifurcations mark the evolution of the 
flow field from a symmetric, conduction-dominated regime 
at lower Ra values to increasingly complex and chaotic 
convective patterns at higher Ra values. The resulting flow 
structures and associated thermal behaviors are analyzed in 
detail in the following sections.

3- 1- Symmetric Flow
Initially, the bottom surface of the cavity is uniformly 

heated, while the vertical sidewalls exhibit thermal 
stratification, and the top wall is kept at a constant cooled 
temperature. These thermal boundary conditions lead to 
the formation of thermal boundary layers along the interior 
surfaces of the cavity. The resulting temperature gradients, 
coupled with gravitational effects, give rise to buoyancy-
driven flow circulation within the enclosure. Fig. 4 illustrates 
isotherm and streamlines plots for Ra ranging from 100 to 
103. At these relatively low Ra values, the flow remains 
predominantly conduction-driven, as observed in Fig. 4(a) 
to Fig. 4(d). The streamlines plots reveal that the thermal 

field within the cavity is largely aligned along the vertical (y) 
axis, indicating the absence of significant convective activity. 
Furthermore, no distinct rising or falling plumes are evident 
within these Ra values, confirming that conduction is the 
dominant mode of HT under these conditions.

3- 2- Asymmetric Flow
In Fig. (4) Shows that, for Ra in the range of 100 and 

103, the fluid flow exhibits symmetrical behavior within the 
enclosure with respect to the y-axis. To examine the onset of 
asymmetry, detailed analyses of the streamline and isotherm 
plots were conducted at Ra = 8 × 103 and 104. At Ra = 8 × 
103 the flow remains symmetric steady, as illustrated in Fig. 
5(a) and Fig. 5(c). However, at Ra = 104 the flow becomes 
increasingly dynamic, characterized by the formation of two 
dominant convective cells that begin to migrate laterally 
toward the center of the cavity, as depicted in Fig. 5(b) and 
Fig. 5(d). The symmetry observed at lower Ra gradually 
breaks down, indicating the system’s departure from its 
previously stable configuration.

This transition signifies the onset of a pitchfork 
bifurcation, wherein the initially symmetric flow evolves 
into an asymmetric state. The development of this asymmetry 
indicates the emergence of Rayleigh-Bénard-type instability, 
marking a critical transition in the flow regime from stable, 
symmetric convection pattern to a more complex and 
asymmetric behavior. This transition reflects a fundamental 
change in the flow dynamics, governed by increasing thermal 
driving forces.

To analyze the onset of pitchfork bifurcation in more 
detail, a bifurcation diagram is constructed in the Ra-u plane, 
as shown in Fig. 6. The bifurcation diagram (refer to [39], for 
details) indicates that for Ra = 8 × 103, the x-velocity u at the 
point P1 (0, 0.2) remains approximately zero.  This behavior 
indicates that the flow retains its symmetry with respect to 
the cavity’s vertical centerline at this Ra. However, as the 
Ra increases to Ra = 104, a symmetry-breaking bifurcation 

  
 

Fig. 3. Comparison of present results with Basak et al. [19] for a square cavity when Pr = 10 and 
Ra = 105. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of present results with Basak et al. [19] for a square cavity when Pr = 10 and Ra = 105.
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becomes evident: the x-velocity at P1​ deviates from zero, 
signaling the onset of an asymmetric flow structure. This 
deviation manifests in two distinct solution branches: in 
one branch, marked by blue circular symbols, the x-velocity 
increases in the positive direction, while in the other branch, 
denoted by purple square markers, it decreases in the negative 
direction. The appearance of these two divergent solution 
paths is a hallmark of a supercritical pitchfork bifurcation. 
This transition signifies a critical change in the system’s 
dynamics, where the steady, symmetric solution loses stability 
and shift to asymmetric state.

 
3- 3- Unsteady Flow

Figure 7 displays the TTS and associated spectral study at 
point P3 (0.6, 0.3) for increased Ra, demonstrating the change 
from steady to chaotic flow.  At Ra = 2 ×105, the flow remains 
constant throughout the FDS, as illustrated in Fig. 7(a).  As Ra 

raises to 3 × 105, the flow transitions into a periodic regime, 
as described in Fig. 7(b), indicating the presence of a Hopf 
bifurcation among these two Ra values. The spectral plots 
in Fig. 7(c) and Fig. 7(e) further substantiate the analysis by 
illustrating the dominant harmonic frequencies fp = 0.0129 
and 0.0432 associated with the periodic behavior at Ra = 3 × 
105 and Ra = 106, respectively.

With an increase in the Ra, significant alterations in flow 
behavior are observed, especially the transition from periodic 
to chaotic motion.  At Ra = 106, the flow demonstrates 
periodic behavior; however, at Ra = 2 × 106, it shifts to a 
chaotic regime, signifying a secondary bifurcation between 
these values. Spectral analysis at Ra = 2 × 106 (Fig. 7(g)) 
indicates destabilization of the principal frequency and the 
lack of sub harmonic peaks, thereby providing clear evidence 
for the transition to chaos.

 Ra = 100  Ra = 101 

(a) 

 

(b) 

 

 Ra = 102  Ra = 103 

(c) 

 

(d) 

 
 

Fig. 4. Isotherm and streamline plots for smaller Ra values at the FDS. 
 

 

 

 

 

 

 

 

Fig. 4. Isotherm and streamline plots for smaller Ra values at the FDS.
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 Ra = 8 × 103  Ra = 104 

(a) 

 

(b) 

 
 

(c) 

 

(d) 

 
 

Fig. 5. Visualization of the pitchfork bifurcation through isotherm and streamline contour. 
Subfigures (a, c) and (b, d) show the symmetric and asymmetric flow regimes, respectively, for 

different Ra. 
 

 

 

 

 

 

 

Fig. 5. Visualization of the pitchfork bifurcation through isotherm and streamline contour. Subfigures 
(a, c) and (b, d) show the symmetric and asymmetric flow regimes, respectively, for different Ra.

 
Fig. 6. Pitchfork bifurcation diagram in the Ra-u plane, where u denotes the x-velocity at point P1 

(0, 0.2).  
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Fig. 7. Temperature time series and the corresponding spectral analysis at point P3 (0.6, 0.3): 

(a) steady state for Ra = 2 × 105; (b, c) shifting to periodic state for Ra = 3 × 105; (d, e) remains 
periodic for Ra = 106; and (f, g) changeover to chaotic state for Ra = 2 × 106. 
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Fig. 7. Temperature time series and the corresponding spectral analysis at point P3 (0.6, 0.3): (a) 
steady state for Ra = 2 × 105; (b, c) shifting to periodic state for Ra = 3 × 105; (d, e) remains periodic 

for Ra = 106; and (f, g) changeover to chaotic state for Ra = 2 × 106.
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The v–θ phase portraits at point P4 (-0.6, 0.3) are analyzed 
over the range of τ = 1000 to 2000 to enhance the understanding 
into the unsteady dynamics.  At Ra = 2 × 105 (Fig. 8(a)), the 
system reaches a stable fixed point. A closed-loop trajectory 
emerges at Ra = 3 × 105 (Fig. 8(b)), indicating a stable limit 
cycle and signaling the onset of Hope bifurcation (refer to 
[40], for more details). Fig. 8(c) illustrates that periodic limit 
cycles are maintained at Ra = 106.  At Ra = 2 × 106, Fig. 8(d), 
demonstrates erratic, non-repeating trajectories, indicating 
that the system has transitioned into a chaotic regime. This 
progression highlights the significant role of bifurcations in 
regulating transitions in NC behavior at higher Ra.

4- Entropy Generation
This section presents a detailed analysis of entropy 

generation (Egen) due to both thermal gradients (Eht) and 
viscous dissipation (Eff) along with the evaluation of local 
Egen (El) and the local Bejan number (Bel), as illustrated in 
Fig. 9. At Ra = 100 to 105, the effects of buoyancy forces 
are minimal, resulting in nearly uniform flow structures. 
Consequently, HT is dominated by conduction, and Egen is 
primarily governed by thermal gradients. Due to the limited 
variation in entropy fields and the dominance of conductive 
HT, Egen plots for these lower Ra values are omitted.

As the Ra increases, buoyancy-driven convection 
becomes more pronounced. This intensifies fluid motion, 
enhancing the contribution of fluid friction (FF) to the local 
Egen. At Ra of 2 × 105, HT predominantly influences Egen, 
whereas FF impact is negligible. The following Fig. 9 also 
demonstrate that an increase in Ra leads to a decrease in Egen 
attributed to HT while simultaneously causing an increase in 
Egen due to FF in the cavity. This transition suggests that at 

Ra = 106, the influence of viscous dissipation is increasingly 
significant. The increase in buoyancy-driven flow at higher 
Ra values enhances fluid motion, consequently amplifying 
irreversibilities associated with fluid flow. In contrast, 
the diminished buoyant forces at lower Ra restrict fluid 
circulation, resulting in HT predominating in entropy 
production.  

5- Heat Transfer
Although isotherms and streamlines are not direct 

measures of HT rates along enclosure surfaces, they provide 
significant qualitative insights into internal flow behavior and 
its influencing factors. Fig. 10 shows the time series of the 
average Nusselt number (Nuh) at the bottom and top walls, 
and Nuv at the left and right walls, reflecting the transient 
thermal response. The fluid within the cavity demonstrates 
thermal stratification, indicating that the temperature of the 
liquid adjacent to each boundary closely aligns with the wall 
temperatures, including those at the heated base, cooled top, 
and stratified vertical walls.

For the initial stratification reduces thermal gradients at the 
boundaries leading to minimal HT. As the system progresses 
from its initial state, stratification progressively diminishes, 
and convective activity prevails. In this transitional regime, 
fluctuations in the average Nusselt number (Nu) become 
apparent and intensify as the Ra increases, demonstrating 
enhanced convective effects. In the fully developed flow 
regime, the behavior of the Nu is contingent upon the Ra: 
it remains constant for Ra ≤ 2 ×105, transitions to periodic 
behavior at Ra = 3 × 105, and displays chaotic oscillations for 
Ra ≥ 2 × 106.  The observed behaviors correspond closely with 
the bifurcation and flow dynamics depicted in Fig. 7 and Fig. 8.

  

  

Fig. 8. Limit point and limit cycle P4 (-0.6, 0.3): (a) for Ra = 2×105, (b) for Ra = 3×105, (c) for 
Ra = 106, and (d) for Ra = 2×106. 
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Fig. 8. Limit point and limit cycle P4 (-0.6, 0.3): (a) for Ra = 2×105, (b) for Ra = 3×105, (c) for Ra = 106, 
and (d) for Ra = 2×106.



Md. Nayem Hossain et al., AUT J. Mech. Eng., 10(2) (2026) 153-166, DOI: 10.22060/ajme.2025.24319.6190

163

    
Ra = 2 × 105 

    
Ra = 106 

Fig. 9. Distribution of Egen due to HT (Eht), Egen due to FF (Eff), local Egen (El), and local Bel for 
the Ra values of 2 × 105 and 106, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Distribution of Egen due to HT (Eht), Egen due to FF (Eff), local Egen (El), and local Bel for the Ra values 
of 2 × 105 and 106, respectively.

  

  

Fig. 10. Average Nusselt number time series for different Ra: (a, b) at the horizontal (bottom and 
top) walls; (c, d) at the vertical (left and right) walls. 
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Fig. 10. Average Nusselt number time series for different Ra: (a, b) at the horizontal (bottom and top) walls; 
(c, d) at the vertical (left and right) walls.
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6- Conclusions
This study examined NC, HT, and Egen in a thermally 

stratified trapezoidal cavity encompassing stratified water. 
The FV method was employed for numerical simulations 
across a range of Ra from 100 to 5 × 106, maintaining a Pr 
of 7.01.

Key findings are summarized as follows:
•	 Thermal boundary layers initially develop along the 

cavity walls, followed by the formation of the primary 
circulatory flow. During the transition phase, thermal 
plumes exhibit alternating rising and sinking behavior, 
leading to the establishment of well-defined cellular 
structures within the flow.

•	 For Ra ≤ 8 × 103, the flow is primarily dominated by 
conduction, and exhibits symmetry about the cavity’s 
mid-plane.

•	 As the Ra increases, the flow undergoes a series of 
bifurcations that lead to qualitative changes in the flow 
regime. A pitchfork bifurcation occurs within the range of 
Ra = 8 × 103 to 104, resulting in symmetry breaking and 
the emergence of asymmetric flow behavior.

•	 A Hopf bifurcation occurs between Ra = 2 × 105 and 3 × 
105, indicating the changeover from a steady asymmetric 
framework to a periodic flow.

•	 A further bifurcation occurs between Ra = 106 and 2 × 106, 
leading to chaotic flow dynamics.

•	 The HT rate at the bottom and top walls is higher than 
that at the vertical walls, primarily due to the thermal 
stratification along the vertical walls.

•	 The analysis of entropy generation reveals that with 
increasing Ra, viscous dissipation becomes increasingly 
significant relative to thermal irreversibility. As a result, 
the overall entropy generation rises, suggesting a decline 
in the thermodynamic efficiency and an increase in energy 
degradation and potential environmental impact.
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