
AUT Journal of Mechanical Engineering

AUT J. Mech. Eng., 9(4) (2025) 357-372
DOI: 10.22060/ajme.2025.24021.6172

Enhancing the Reliability of Control Systems
Using an Improved Deep Reinforcement Learning Framework
Maryam Barekatain, Negin Sayyaf * 

Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

ABSTRACT: This paper presents an improved framework for deep reinforcement learning algorithms 
integrating online system identification, based on the Dyna-Q architecture. The proposed framework 
is designed to tackle the challenges of both Multi-Input Multi-Output and Multi-Input Single-Output 
systems in complex, industry-relevant environments, thereby significantly enhancing adaptability and 
reliability in industrial control systems. It should be noted that in the suggested novel framework, the 
system identification and model control processes run in parallel with the control process, ensuring 
a reliable backup in case of faults or disruptions. To verify the efficiency of the aforementioned 
approach, comparative evaluations in the presence of three of the most common deep reinforcement 
learning algorithms, i.e. Deep Q Network, Deep Deterministic Policy Gradient, and Twin Delayed Deep 
Deterministic Policy Gradient, are conducted on industry-relevant environments simulations available 
in OpenAI Gym, including the Cart Pole, Pendulum, and Bipedal Walker, each chosen to reflect specific 
aspects of the novel framework. Results demonstrate that the proposed method for leveraging both real 
and simulated experiences in this framework improves sample efficiency, stability, and robustness.
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1- Introduction
Control systems in industrial applications can be 

interpreted as the foundation for ensuring efficient and 
reliable operation. Traditional control methods, such as 
Proportional-Integral-Derivative (PID) controllers [1] and 
model-based approaches [2], have been the backbone of 
industrial automation for decades, offering stability and 
reliability. These methods are well-understood, relatively 
easy to implement, and provide predictable performance 
for stable and well-characterized processes. However, the 
growing complexity of industrial environments and the need 
for intelligent, adaptable control systems are pushing the 
boundaries of traditional approaches [3].

Traditional control methods excel in scenarios where 
system dynamics are well-defined and do not change 
significantly over time. They can provide robust performance 
in steady-state conditions and are typically straightforward 
to design and tune. However, they struggle in environments 
where system parameters vary, where there are unforeseen 
disturbances, or where the control objectives change 
frequently. Therefore, they often fall short in environments 
that demand intelligent adaptability and compatibility with 
dynamic conditions [4–6].

As industries evolve, the need for smart control systems 
that can learn and adapt to changes autonomously has become 

increasingly evident [7, 8]. Furthermore, according to the 
complexity, nonlinearity, and time-variance of most industrial 
systems, Reinforcement Learning (RL) offers a compelling 
alternative by providing a framework where controllers can 
learn directly from their environment. It allows the controller 
to learn through exploration and interaction to uncover 
optimal actions, which results in continuously improving 
performance for the control signal [9]. Also, RL controllers 
can adapt to system conditions by learning the ongoing 
dynamics, reducing the need for extensive reprogramming.

However, implementing RL in industrial applications 
presents challenges because the initial knowledge base 
for RL controllers can be more complex than traditional 
methods. Additionally, ensuring stability during the learning 
process is crucial, as disruptions like sensor malfunctions or 
communication failures can arise unexpectedly. In industrial 
systems, sensor malfunctions can result in inaccurate or 
missing data, disrupting the controller’s ability to make 
proper decisions, which may lead to suboptimal performance 
or unsafe conditions. Similarly, communication disruptions 
between sensors, controllers, or actuators can delay critical 
signals or feedback loops, increasing the risk of equipment 
damage, downtime, and process instability [10]. To partially 
overcome these challenges, model-based RL approaches 
provide certain advantages by incorporating an internal 
model of the environment, which can enhance both safety and 
efficiency compared to model-free methods [11].
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The Dyna-Q algorithm, proposed by Sutton (1990) [12, 
13], is a model-based RL approach that combines model-
free learning with an internal model of the environment. In 
the Dyna-Q framework, the agent learns both a policy and a 
dynamics model of the environment. This allows the agent 
to generate simulated experiences, in addition to learning 
from real interactions, which can significantly improve 
sample efficiency. It is worth noting that Dyna-Q is not 
model-dependent (like the classic Model Predictive Control 
approach), but uses the model as a complementary part of the 
architecture.[14].

Dyna-Q has been successfully applied to a variety of 
control problems, demonstrating its ability to enhance the 
performance of model-free reinforcement learning algorithms. 
However, the initial Dyna-Q studies and many of its early 
adaptations utilized tabular approaches for both the planning 
and learning processes, which restricts its applicability 
to more complex, high-dimensional environments [15]. 
To address this limitation, researchers have explored the 
integration of Dyna-Q with neural networks (NN), leading 
to the development of the Deep Dyna-Q (DDQ) framework 
[16]. DDQ is proposed as a combination of Dyna-Q and deep 
learning methods, using NNs to model the state-action space.

Building upon the success of DDQ, several studies have 
explored the integration of DDQ with deep reinforcement 
learning (DRL) algorithms, such as deep Q-network (DQN). 
The study in [17] refers to this combination as Dyna-DQN. 
The authors aim to demonstrate the effectiveness of k-step 
rollouts in planning compared to single-step rollouts in 
achieving control outcomes. The authors also examine the 
planning shape effectiveness with perfect and imperfect 
models. The work in [18] presents an energy management 
system (EMS) architecture based on Dyna RL, which 
integrates the concepts of the Dyna framework and the DQN 
algorithm. The paper’s results highlight that Dyna-DQN 
outperforms both Q-Learning and DQN.

In addition, authors in [19] studied DDQ as model-
based learning to improve learning speed and applied it to 
robot formation change. The results showed that DDQ can 
improve the number of episodes by about half compared to 
DQN. Also, the study in [20] investigates the Model-assisted 
Bootstrapped Deep Deterministic Policy Gradient (DDPG) 
algorithm in robotic environments, focusing on managing 
agent uncertainty to optimize artificial data usage in high-
uncertainty scenarios. In [21], the authors extend DRL for 
vision-based navigation by using a DDQ learning algorithm 
to enable a robot to navigate and evacuate environments 
with varying types and configurations of static and dynamic 
obstacles.

In short, prior works integrating Dyna-Q concepts into 
reinforcement learning frameworks have shown promising 
results across multiple environments. However, these 
approaches generally lack comprehensive benchmarking 
across widely recognized RL algorithms, limiting insight into 
their general applicability. Moreover, their architectures are 
often tailored to specific task settings and do not emphasize 
modular design, making them less adaptable to varied system 

configurations.
In parallel with these Dyna-Q-inspired approaches, 

recent model-based deep reinforcement learning methods 
such as DreamerV3 [22], PlaNet [23], and MBPO [24] have 
shown strong performance in visual and continuous control 
benchmarks by learning compact latent dynamics models. 
While these works focus on high-dimensional perception and 
end-to-end policy learning, the proposed framework in this 
paper emphasizes modularity and adaptability in industrial 
control settings with parallel system identification and control 
modules.

The main intuition of the paper originates from industrial 
control applications, where disruption, sensor malfunction, or 
disconnection from the controller can lead to major defects. 
These failures are critical, as industrial systems rely on the 
continuous transmission of essential data to generate accurate 
control signals and maintain optimal performance. Motivated 
by these real-world challenges, this paper introduces a 
novel solution: an RL-based control approach that operates 
independently, supported by an online system identification 
module. This combination addresses vulnerabilities caused by 
sensor failure or communication loss, while also maintaining 
a continuously updated model that serves as a reliable backup 
data generator, sustaining the control loop when the actual 
system cannot fulfill the data requirements.

In addition to enhancing reliability, the proposed 
approach can reduce the cost and risk associated with real-
world exploration in reinforcement learning environments. 
The online model enables the generation of supplementary 
training data, decreasing the reliance on expensive or unsafe 
physical transitions during the RL training phase, which is an 
important consideration in industrial settings.

Continuing the mentioned path, this paper presents a novel 
framework based on the Dyna-Q architecture, developed for 
DRL combined with online system identification, applied to 
Multiple Input Multiple Output (MIMO) and Multiple Input 
Single Output (MISO) systems. The analysis focuses on both 
continuous and discrete, industry-relevant environments, 
particularly those that reflect real-world industrial challenges 
and require robust, adaptive control in both simple and 
complex scenarios. The online system identification 
component continually updates the model of the system, 
providing a reliable backup in case of sensor failure or 
communication disruptions. This framework aims to enhance 
operational robustness for industrial control systems by 
reducing sensitivity to unforeseen challenges. Moreover, by 
learning from a simulated environment alongside real-world 
interactions, this approach reduces the number of real-world 
trials, thereby minimizing potential risks associated with 
exploration in industrial systems.

For comparative analysis, the proposed framework is first 
evaluated on basic and commonly used DRL algorithms: DQN 
and DDPG. These algorithms are primarily applied to simpler 
environments and MISO systems, where they have shown 
effectiveness in handling relatively straightforward control 
problems. However, for MIMO systems, which are naturally 
more complex, the Twin Delayed Deep Deterministic Policy 
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Gradient (TD3) algorithm is employed, which is known for 
its robustness and superior performance in continuous control 
tasks [25]. TD3 has emerged as one of the most reliable and 
fastest algorithms for MIMO systems, making it an ideal 
candidate for benchmarking this framework.

To thoroughly observe the performance of the proposed 
framework, the results of its integration with three 
DRL algorithms are provided using industry-relevant 
environments, including the inverted pendulum and robot 
walking simulations available in OpenAI Gym [26].

In summary, this paper offers two key contributions to the 
field of reinforcement learning:

Introduction of a novel DRL-based control framework that 
integrates the online system identification to address critical 
industrial challenges such as sensor failure, data loss, and 
unsafe exploration (The framework ensures robust control 
by enabling the RL agent to operate independently while 
leveraging a continuously updated system model as a backup 
for control signal generation and training data augmentation.) 

Extensive practical study of the proposed framework in 
both MIMO and MISO systems under discrete and continuous 
control settings (The evaluation spans a range of industry-
relevant tasks and systematically examines the interaction 
between model accuracy, control signal complexity, and DRL 
performance.)

The paper is organized as follows. The following section 
goes through the details of the utilized algorithms in this study, 
i.e., DQN, DDPG, TD3. Section 3 is devoted to a detailed 
explanation of the proposed framework. The results of the 
suggested framework application in three environments with 
benchmark DRL algorithms are also compared and discussed 
in Section 4. Finally, the paper is concluded in Section 5.

2- Algorithms
In this section, a thorough review of the experimental 

algorithms used in this paper is presented. First, the 
fundamental ideas and core concepts of RL will be explained.

Reinforcement Learning (RL) is a branch of machine 
learning where an agent learns to make decisions by 
interacting with its environment through trial and error. The 
agent aims to maximize cumulative rewards over time, as a 
way of improving its decision-making policy. In other words, 
RL involves the agent performing actions and receiving 
rewards based on outcomes [27].

At its core, RL is about learning from interaction. The 
agent interacts with an environment defined by states and 
actions. The fundamental elements include:

State (S): Represents the current situation of the 
environment.

Action (A): The act selected by the agent based on the 
obtained policy, aiming to maximize future reward.

Reward (R): Feedback from the environment based on the 
action taken.

Policy (π ): The agent’s strategy for choosing actions in 
different states, which can be deterministic or stochastic.

Value Function (V): The prediction of future rewards used 
to evaluate the goodness of a state.

Q-Value (Q): Represents the value of a state-action pair.
The primary goal of RL is to discover a policy that 

maximizes the expected sum of rewards over time. RL excels 
in environments where the dynamics are unknown or partially 
known. The agent learns through exploration, trying different 
actions, and observing the results. This trial-and-error process 
enables the agent to develop a robust policy even in complex 
and dynamic settings, much like how humans learn from 
experience [28].

RL algorithms are typically categorized into two main 
types based on their approach to learning [29]:

Value-Based Methods: These methods focus on estimating 
the value functions. The most fundamental value-based 
method is Q-learning [30], which directly learns the value of 
action-state pairs and uses these values to form a policy.

Policy-Based Methods: These methods directly learn 
the policy that maps states to actions without learning value 
functions explicitly. Policy Gradient methods are a common 
example [31].

In addition, actor-critic methods combine both value-
based and policy-based approaches. The actor updates the 
policy (policy-based), while the critic evaluates the action 
taken by the actor by estimating value functions (value-
based). This dual approach leverages the strengths of both 
methods, resulting in more stable and efficient learning [32].

The evolution to DRL has seen the Q-learning algorithm 
significantly develop with the advent of NNs as function 
approximators [30, 33]. This development has led to DRL, 
which allows RL to scale to previously intractable problems, 
such as learning to play video games directly from pixels. 
In this study, DQN, DDPG, and TD3, as the most widely 
used DRL algorithms, are used to evaluate the suggested 
framework. To this end, brief descriptions of these algorithms 
related to how they work, and their pros and cons, can be 
observed in the following.

2- 1- Deep Q-Network
DQN is a value-based algorithm that combines Q-learning 

with NNs to handle high-dimensional sensory inputs [34]. 
The essential idea is to use an NN to approximate the 
Q-function, ( ), ;Q s a θ . Additionally, to break the temporal 
correlations between consecutive experiences and stabilize 
training, DQN uses an experience replay buffer. The agent 
stores past transitions ( )1 , ,, tt tt ra ss +  in a replay buffer and 
samples random mini-batches to train the network, where 

 , t ts a  and tr   respectively represent the state, action, and 
reward at the current timestep, and 1ts +  denotes the next state 
in the environment. Finally, by setting a separate network 
for the calculation of the target Q-value, the learning process 
becomes more robust and stable. Indeed, the algorithm takes 
advantage of the Bellman equation in Eq. (1) for calculating 
target values [35]. Hence, by performing the gradient descent 
step on the loss function in Eq. (2), the Q-values are updated 
until the Q-function is optimal.
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It should be noted that in the aforementioned equations, γ 
is the discount factor that determines the importance of future 
rewards compared to immediate rewards. N represents the 
minibatch’s size, and θ represents the parameters of the NN. 
Q′ and a′ are also the target Q-network and the next action, 
respectively.  ty is the estimated Q-value at timestep t.

2- 2- Deep Deterministic Policy Gradient
DDPG is an actor-critic algorithm designed for 

environments with continuous state and action spaces. It 
maintains a deterministic policy (  | )s µµ θ  and updates the 
actor and critic networks alternately [36]. To stabilize training, 
DDPG employs target networks for both the actor and critic, 
used to compute the target values for the Bellman equation. 
The critic and actor update equations are respectively defined 
in
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where µθ  and Qθ  are the parameters of the actor and 

critic networks, while 'µ and 'Q represent the target critic 
and target actor networks, respectively.

Since DDPG uses a deterministic policy, exploration 
during training is achieved by adding noise to the action 
selected by the actor network. Also, to maintain more stability 
in learning, the target values are constrained to change slowly, 
using soft target updates in Eq. (5).
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In Eq. (5), τ represents the small update rate and µθ ′

and Qθ ′ denote the target critic and target actor networks’ 
parameters, respectively.

Twin Delayed Deep Deterministic Policy Gradient
TD3 improves upon DDPG by addressing the 

overestimation bias in the value function. To this end, the 
agent employs two critic networks, specified by parameter 
vectors 1θ ′  and 2θ ′  for estimating the Q-values, i.e. 

1
)( ,Q s aθ ′  and 2 )( ,Q s aθ ′ , to provide a more cautious 

estimation of the Q-value [25]. In more detail, the TD3 agent 
takes the minimum of these two Q-values to determine the 
target for the critic update, Eq. (6), during training. Because 
action selection is governed by the policy, the target value for 
updating the target critic is calculated as follows. 
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Moreover, TD3 introduces target policy smoothing to 

further stabilize the training process. This technique adds 
a small amount of noise to the action selected by the target 
policy network when computing the target Q-value. Also, 
TD3 delays the update of the actor (policy) network as for 
every d critic update, the actor network is updated once. This 
delayed update prevents the policy from changing too rapidly 
in response to potentially inaccurate Q-value estimates. 
During training, the critic is updated by minimizing the loss 
function, and the actor is updated using the deterministic 
policy gradient. Accordingly, the critic and actor update 
equations can be modified as follows: 
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In the above equations, the jθ refers to the j-th critic 
network’s parameters.

3- Proposed Framework
In advanced problems based on Reinforcement Learning 

algorithms, one prominent strategy for improving efficiency 
is the Dyna-Q approach. Dyna-Q represents an extension 
of the RL architecture, which integrates learning from real 
experiences with simulated experiences drawn from a model 
of the environment. This model-based learning paradigm 
enhances data efficiency by supplementing direct interactions 
with the environment [12, 13]. Through the indirect RL phase, 
the agent does not interact with the real environment, but it 
updates the policy using simulated experiences generated 
by the internal model. However, the traditional Dyna-Q 
framework is primarily designed for tabular RL methods 
and struggles to extend to high-dimensional continuous 
spaces, particularly in MIMO settings [15]. To address these 
challenges, this paper proposes a novel framework designed to 
handle a variety of RL tasks, particularly in high-dimensional 
continuous control applications.

The proposed framework, described in Fig. 1, is composed 
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of three key processes: the control process, the system 
identification process, and the model control process. These 
components work in parallel to support both policy learning 
and environment dynamics modeling, providing a flexible 
and adaptive solution for various DRL tasks and real-world 
industrial applications. 

It is worth noting that while this study evaluates the 
framework using DQN, DDPG, and TD3, these algorithms 
are selected solely for benchmarking purposes. The 
architecture of the framework is designed to be modular 
and algorithm-agnostic, allowing any RL or DRL algorithm 
to be integrated as the control agent. The control process, 
system identification process, and model control process are 
implemented as independent modules, making the framework 
broadly applicable across various RL paradigms.

Throughout this paper, three distinct processes 
are referred to: the control process, involving real-
environment interactions; the model control process, in 
which data generated by the learned model is used; the 
system identification process, through which the model is 
continuously updated using collected transitions; and the 
policy learning, defined as the training of the RL agent using 
both real and model-generated transitions. In the following 
sections, each component of the framework, as represented in 
the block diagram, is explained in detail.

3- 1- Control Process
The Control Process manages policy learning, enabling 

the agent to interact with the environment and optimize its 
decisions. As illustrated in Figure 1, this process relies on 

neural networks, with two primary architectures: Q-Networks 
(used in DQN for value-based learning) and Actor-Critic 
Networks (used in DDPG and TD3 for continuous control 
tasks). These networks allow the agent to approximate the 
optimal policy by learning from the environment’s feedback, 
which is obtained through probabilistic transitions represented 
as '( | , )P s s a  and reward functions '( , , )R s a s .

This process supports both discrete and continuous 
action spaces and can be adapted to various RL problems by 
switching between value-based or actor-critic algorithms. 
The inclusion of algorithms such as DQN, DDPG, and TD3 
ensures that the framework can be specialized for different 
environments, including MISO and MIMO applications.

3- 2- System Identification Process
To handle the complexity of high-dimensional 

continuous environments, the framework integrates a system 
identification process for learning the underlying dynamics 
of the environment. To implement the online system 
identification module, a feedforward neural network trained 
via supervised learning is used to approximate the system’s 
transition dynamics and reward function [37]. The input to 
this model is a concatenated vector of the current environment 
state ts and the action taken ta  , i.e. [ ],t ts a , and the output 
consists of the predicted next state 1t̂s + and the corresponding 
reward t̂r   . The neural network is trained using randomly 
sampled mini-batches of transitions ( )1, , ,t t t ts a s r+ collected 
online during interaction with the real environment. The loss 
function used for training is defined as the mean squared 
error (MSE) between the predicted and actual outcomes in 

 
 

Fig. 1: Block diagram of the proposed framework 
(Remark: the policy learning in DQN algorithm is done via Q-network, while the policy is learned via actor and critic networks in 

DDPG and TD3 algorithms) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Block diagram of the proposed framework (Remark: the policy learning in DQN algorithm is done via 
Q-network, while the policy is learned via actor and critic networks in DDPG and TD3 algorithms)
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Eq. (9) [38]. This supervised learning setup assumes the 
environment’s dynamics are stationary and continuous over 
short time windows and the outputs are bounded, which 
allows the neural network to adaptively approximate the 
evolving system behavior.
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 As depicted in Fig. 1, the aforementioned model network 
approximates the environment’s transition dynamics, 
learning to map from an action state pair to a new state and 
reward prediction. By modeling these dynamics, the agent 
can simulate environment interactions and generate synthetic 
experiences, reducing reliance on real-world data.

This modeling process provides a key advantage in 
situations where data collection is costly or time-consuming. 
The ability to learn and predict the environment’s behavior, 
parallel to the other ongoing processes in the system, allows 
for more efficient policy learning, enabling the agent to 
improve its performance without requiring extensive real-
world interaction. This partnership also keeps the control 
process steady during disruptions and data reliability issues, 
taking the backup role for real interactions in the model 
control process as illustrated in the diagram of Fig. 1.

3- 3- Model Control Process
The model control process facilitates seamless interaction 

between the control process and the system identification 
process. As shown in Fig. 1, it enables the agent to update 
its policy using both real and simulated experiences, thus 
bridging the gap between model-based and model-free 
learning. During the model episodes, the data used for policy 
learning is generated by the model that updates through 
the system identification process. By continually refining 
the model of the environment, the agent can enhance the 
controller’s performance through simulated experiences and 
rely on model feedback in case of disruption.

The combination of real and simulated experience, enabled 
by the model control process, ensures that the framework 
can be applied to a wide range of applications, particularly 
those involving high-dimensional continuous spaces such as 
robotic control, autonomous driving, and advanced MIMO 
systems. 

3- 4- Training Episode Scheduling Strategy
The online system identification process begins at the 

very start of training and continuously updates the model 
in parallel with the control and model control processes, 
using transitions collected directly from real-environment 
interactions. After the fixed episode threshold switchT , i.e. a 
hyperparameter that should be tuned based on the complexity 
of the system, the framework begins to alternate between real 
control episodes and model control episodes. The selection 
is governed by a probability parameter [0,1]β ∈ , such that 

a real control episode is executed with probability β , and 
a model control episode is executed with probability 1 β− . 
This switching mechanism is designed to balance exploration 
in the real environment and exploitation of the learned 
model, and can be tuned based on environment complexity 
and model training performance. Hence, the episode type can 
be selected using a uniform random variable (0,1)z u  as 
shown in Eq. (10)
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where RE and ME  respectively denote the real episodes 
during the control process and the model episodes during the 
model control process, and episodeN  refers to the number of 
episodes passed.

It is worth noting that while the current switching strategy 
between the control process and model control process is 
defined probabilistically for benchmarking purposes, in 
practical deployment, this mechanism can be adapted to 
respond directly to real-world conditions such as sensor 
failures or communication disruptions. Since the system 
identification module operates online and continuously from 
the beginning of training, the model remains up-to-date and 
can serve as a reliable fallback when such challenges arise.

The following section evaluates the performance of the 
framework across three industry-relevant environments in 
OpenAI Gym. The benefits and limitations of this framework 
will be discussed in the context of MIMO and MISO 
environments, considering both continuous and discrete 
action spaces.

4- Numerical Simulations
The results of applying the proposed framework based on 

three DRL algorithms are investigated in this section, focusing 
on how it performs in simple and complex environments. 
In the following subsections, dedicated to the evaluation of 
DQN, DDPG, and TD3 algorithms respectively, first, the 
general features of the simulation environments are detailed, 
and then it’s followed by the results and discussion of the 
Dyna-Q-based framework experiments.

To validate the defined approach, the collected reward 
by the agent through episodes, during both RL control and 
model control, and the loss of each environment’s modeling 
process are provided. The increases and decreases in model 
loss curves indicate weak and strong models, respectively. 
To evaluate the contribution of the model-generated data, 
performance in model control episodes is compared with that 
in real control episodes. Although the learning trajectories may 
differ, both converge to similar performance levels, indicating 
that the model successfully supports policy refinement. This 
demonstrates that the model control process can generate data 
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of sufficient quality to guide the agent toward solving the 
environment, complementing real-environment interactions.

According to the statistical inherent of the data-driven 
algorithms, to evaluate the proposed framework in the 
presence of DQN, DDPG, and TD3 algorithms in the 
following environments, the corresponding experiments have 
been run via different seeds 10, 20, 30, 40, and 50. To ensure 
the high efficiency of the proposed novel approach, the 
graphs in each subsection have been plotted corresponding 
to the worst case, i.e. the latest convergence to the optimal 
response.

The role of hyperparameters in both the control signal 
learning and system modeling phases is also examined. 
Parameters such as learning rate, network architecture, batch 
size, and exploration noise were initially selected based on 
commonly reported values in the literature and subsequently 
refined through an iterative trial-and-error process, guided 
by the observed learning behavior and the complexity of 
the environment. It should be noted that in both simulation 
studies and practical applications, hyperparameter tuning 
must be performed individually for each plant or system, as 
the optimal configuration is highly dependent on the system’s 
specific dynamics and task characteristics.

It is worth mentioning that both the policy learning 
and system identification modules are trained using first-
order gradient-based methods, resulting in computational 
complexity that scales polynomially with the number of 
model parameters and input dimensions.

4- 1- Deep Q-Network Results
The outcome of integrating the framework with DQN 

algorithm is evaluated on the Cart Pole environment from 
OpenAI Gym. The following subsection provides details 

about this environment.

4- 1- 1- Simulation Environment
Cart Pole is a part of the classic control environments 

in OpenAI Gym. In this setup, a pole is attached by an 
unactuated joint to a cart, which moves along a frictionless 
track. The pendulum is placed upright on the cart, and the 
goal is to balance the pole by applying forces to push the cart 
left or right. Therefore, the action space is discrete with two 
values. The state space is a 4-dimensional array in continuous 
values of the cart’s position and velocity, and the pole’s angle 
and angular velocity.

The reward function for the mentioned experiment 
works relatively simply: 1 positive reward is given to each 
action made, and the episode terminates if the pole angle is 
greater than ±12° or the cart position is greater than ±2.4. 
In each episode, the agent has 500 timesteps to interact with 
the environment. To solve the environment, the agent must 
achieve a score of around 500.

4- 1- 2- DQN Simulation Results
The best hyperparameters for RL control with DQN were 

determined through trial and error. The agent interacted with 
the environment for 500 timesteps, collecting rollouts, before 
the learning process began. The learning rate, gamma, and 
sample memory batch size are respectively set to 0.0003, 
0.99, and 128. The exploration parameter, denoted as ϵ, 
begins at 1.0 and decays to 0.03 with a decay rate of 1000 
episodes. The NN architecture used in the algorithm consists 
of three fully connected layers, each with 128 units.

As shown in Fig. 2, the agent interacts with the 
environment for 700 episodes, where the agent’s performance 
converges around episode 530, reaching a score of 500. It  

 
Fig. 2: The obtained reward during RL control episodes, in the presence of DQN algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The obtained reward during RL control episodes, in the presence of DQN algorithm
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is worth noting that the occasional drops in performance 
are attributed to the small exploration rate, which continues 
towards the end.

The next step involves incorporating the framework, 
which requires an online model of the environment. To 
construct this model, a two-layer NN is used to estimate 
the environment’s dynamics based on experiences collected 
during training. The modeling process employs a learning 
rate of 0.001 and a memory sample batch size of 128. To 
assess the effectiveness of the modeling process, the model’s 
loss is observed.

As shown in Fig. 3, the loss reaches the 10−6 range, 
indicating that the model has effectively learned to track the 
environment’s dynamics. In the subsequent step, the proposed 

approach is utilized by incorporating the environment 
model into the control process. Approximately 20 percent of 
the control episodes are dedicated to the model control, using 
the model for the feedback signal to simulate interactions. 

During this phase, shown in Fig. 4, the agent is given 
150 timesteps to interact with the system’s model. In the 
Cart-Pole environment, the reward function is defined such 
that the agent receives a reward of +1 for every timestep it 
successfully balances the pole. The environment is considered 
“solved” or “done” when the agent reaches a total score of 
500, which corresponds to the maximum of 500 timesteps 
without failure. Accordingly, in the model control episodes 
of this study, the episode length was set to 150 timesteps to 
evaluate whether the agent could approach a comparable level 
of performance using only model-generated experiences. It 
is anticipated that, with sufficient interaction, the agent will 
converge to a score of around 150 in these episodes, reflecting 
the effectiveness of the learned model in replicating the Cart-

Pole reward structure.

4- 2- Deep Deterministic Policy Gradient Results
In this section, the DDPG algorithm, which employs a 

more complex actor-critic structure, is integrated with the 
framework to experiment with a more challenging version of 
the Cart-Pole environment: The Pendulum.

4- 2- 1- Simulation Environment
The Pendulum environment consists of a pendulum fixed 

at one end to a stationary point, with the other end free to 
move. The objective is to apply torque to the free end to 
swing the pendulum into an upright position. In this case, the 
state space is continuous with 3 dimensions, consisting of the 
pendulum’s position and angular velocity.

Also, the action space is continuous, defined by the torque 
applied to the free end of the pendulum, ranging from −2 to 
+2. Moreover, the reward function can be found in Eq. (11).
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4- 2- 2- DDPG Simulation Results

As the complexity of the algorithm and environment 
increases, it becomes more challenging to obtain effective 
control signals and accurate models during training. 
Consequently, the significance of hyperparameters grows 
with more advanced algorithms. To illustrate the impact of 
hyperparameters on performance, two cases of RL control are 
presented in Figs. 5 and 6.

Though both figures use a three-layer neural network 

 
Fig. 3: The environment model loss using the suggested framework, in the presence of DQN algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The environment model loss using the suggested framework, in the presence of DQN algorithm
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Fig. 4: The acquired reward during model control episodes, in the presence of DQN algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The acquired reward during model control episodes, in the presence of DQN algorithm

 
Fig. 5: The obtained reward during RL control episodes using the DDPG algorithm with untuned hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The obtained reward during RL control episodes using the DDPG algorithm with untuned hyperparameters
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with dimensions of 256 × 256 and a batch size of 256, Fig. 
5 shows the unstable and unresolved learning results, where 
the learning rate, γ, and τ are set to 0.0003, 0.99, and 0.005, 
respectively. Additionally, the noise standard deviation is set 
to 1, and the policy is updated at every timestep after the first 
2000 timesteps. Whereas Fig. 6 demonstrates the outcome 
of proper hyperparameter tuning. Here, the learning rate, γ, 
and τ are adjusted to 0.0001, 0.98, and 0.02, respectively, 
and the policy update frequency is set to 50. Furthermore, 
the exploration noise standard deviation decreases gradually 
from 0.2 to 0.05 during the first 200 episodes of the process.

To proceed with the first step of the provided approach, 
which involves model learning, it is crucial to consider the 
role of hyperparameters in model design. As illustrated 
in Figs. 7 and 8, the importance of hyperparameter tuning 
increases with the complexity of the environment. Fig. 7 
shows that a model with a two-layer NN (128 × 128) results 
in suboptimal performance. In contrast, the desired model 
performance, achieved with a three-layer NN (256 × 256), is 
demonstrated in Fig. 8.

It is now clear that the complexity of the environment, 
including the action space and reward function, affects the 
modeling process, potentially leading to an increase in loss 
compared to simpler environments.

Moving on to the second step, Fig. 9 illustrates the results 
of model control episodes. In this environment, the agent 
aims to keep the pendulum upright by applying continuous 
torques, and performance is measured by cumulative reward, 
with optimal policies approaching a score close to zero (since 
the reward is negative and penalizes deviation from the 

upright position). The similarity in the trend and final reward 
between the control episodes in Fig. 6 and model control 
episodes in Fig. 9 indicates that the policy learned from 
model-generated data is effectively contributing to the task. 
Despite differences in learning paths, both curves converge 
to comparable performance, demonstrating that the model 
is capable of producing sufficiently accurate transitions to 
support policy refinement in parallel with real interactions.

4- 3- Twin Delayed Deep Deterministic Policy Gradient 
Results

To validate the introduced framework in the presence of 
TD3 algorithm, the examination environment becomes more 
complex as it involves a MIMO system. The experiments 
using the mentioned approach with TD3 are carried out 
in the Bipedal Walker environment, part of the Box2D 
environments available in OpenAI Gym. This setup allows 
us to observe the impact of transitioning from MISO to 
MIMO high-dimensional systems on the efficiency of this 
framework, especially as the complexity of the learning 
algorithm increases.

4- 3- 1- Simulation Environment
The Bipedal Walker environment simulates a 4-joint 

robot. The significance of this examination lies in its high-
dimensional, multi-output nature. The state space is a 
27-element array, consisting of hull angle speed, angular 
velocity, horizontal and vertical speed, positions of joints, 
joints’ angular speeds, legs’ contact with the ground, and 10 
lidar rangefinder measurements.

The action space is a 4-element array representing the 

 
Fig. 6: The obtained reward during RL control episodes using the DDPG algorithm with tuned hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The obtained reward during RL control episodes using the DDPG algorithm with tuned hyperparameters
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Fig. 7: The environment model loss using the suggested framework, in the presence of DDPG algorithm with untuned 

hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The environment model loss using the suggested framework, in the presence of DDPG algorithm with 
untuned hyperparameters

 

Fig. 8: The environment model loss using the suggested framework, in the presence of DDPG algorithm with tuned 
hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The environment model loss using the suggested framework, in the presence of DDPG algorithm with tuned 
hyperparameters
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motor speed values for each of the 4 joints (hips and knees). 
The reward function considers the environment solved if the 
agent achieves a score of +300 within 1600 timesteps. If the 
robot falls, it incurs a penalty of -100 points, and applying 
motor torque reduces the score by a small amount. A more 
optimal agent will attain a higher score.

4- 3- 2- TD3 Simulation Results
In Figs. 10 and 11, a comparison of hyperparameters 

for the RL control process is provided. Focusing on the 

differences in hyperparameters, changes such as increasing 
the critic learning rate from 0.0001 to 0.0003, adjusting 
the sample batch size from 128 to 200, modifying the NN 
architecture from a three-layer 256 × 256 to a three-layer 
400 × 300, and altering the policy update frequency from 4 
to 2 significantly improved the learning curve, preventing 
instability and suboptimal performance as shown in Fig. 
10. With proper hyperparameter tuning, the control process 
demonstrated strong performance, converging to a score of 
300, as illustrated in Fig. 11.

 
Fig. 9: The acquired reward during model control episodes, in the presence of DDPG algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The acquired reward during model control episodes, in the presence of DDPG algorithm

 
Fig. 10: The obtained reward during RL control episodes, in the presence of TD3 algorithm with untuned hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The obtained reward during RL control episodes, in the presence of TD3 algorithm with untuned 
hyperparameters
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Now, moving on to the modeling and model control 
phases, the results of the modeling process are shown in 
Figs. 12 and 13. Designing an online model in this case is 
much more time-consuming and computationally intensive, 
considering the complexity of the MIMO system compared 
to the earlier ones. As a result, the general accuracy of the 
model has decreased. However, properly adjusting the 
hyperparameters for the corresponding neural networks can 
still significantly improve the model’s performance. By 
upgrading from a 3-layer 256 × 128 network with a batch size 

of 128 to a -4layer 300 × 400 network with a batch size of 100, 
the model loss curve improved from Fig. 12 to Fig. 13.

For the model control episodes, 20% of the total episodes 
are dedicated to the simulated interactions in model, with 
each episode spanning 1200 timesteps. However, the model 
control episodes only begin after approximately 180 episodes 
of RL control have been completed. This decision was 
made because the modeling process required more time and 
collected rollouts to establish a solid baseline model before 
starting the model control phase. To ensure an effective 

 

Fig. 11: The obtained reward during RL control episodes, in the presence of TD3 algorithm with tuned hyperparameters 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The obtained reward during RL control episodes, in the presence of TD3 algorithm with tuned hy-
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Fig. 12: The environment model loss using the suggested framework, in the presence of TD3 algorithm with untuned 

hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The environment model loss using the suggested framework, in the presence of TD3 algorithm with 
untuned hyperparameters
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learning process, the rewards obtained from the model 
episodes were constrained to the range of -300 to 400.

Fig. 14 shows the learning curve of the model control 
episodes, highlighting the model’s performance, which is 
relatively close to that expected for the actual bipedal system. 
In the Bipedal Walker environment, the agent must learn to 
coordinate continuous joint actions to walk across uneven 
terrain, with episode rewards typically ranging from -100 
(failure) to 300 (successful walking). The convergence of 

the model-based learning curve toward the expected reward 
range indicates that the model is capable of generating 
realistic transitions and supporting effective policy learning, 
even in this more complex MIMO control setting.

It should be noted that all experiments were conducted on 
a Dell XPS 15 laptop equipped with a 12th Gen Intel® Core™ 
i7-12700H processor (20 CPUs, 2.30 GHz), 32 GB RAM, 
and an NVIDIA GeForce RTX 3050 Laptop GPU. Training 
time varied across environments and algorithms; for instance, 

 
Fig. 13: The environment model loss using the suggested framework, in the presence of TD3 algorithm with tuned 

hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The environment model loss using the suggested framework, in the presence of TD3 algorithm with 
tuned hyperparameters

 
Fig. 14: The acquired reward during model control episodes, in the presence of TD3 algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The acquired reward during model control episodes, in the presence of TD3 algorithm
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training with TD3 on the Bipedal Walker environment 
required approximately 7 hours to converge, while Cart Pole 
with DQN required around 40 minutes. The lightweight 
model used in system identification enabled fast inference, 
supporting near real-time performance in simulation.

5- Conclusion
In this study, an improved framework for DRL was 

presented that integrates online system identification, based 
on the Dyna-Q approach. The parallel operation of system 
identification and model control processes with the control 
process in the suggested approach provides a reliable backup 
mechanism for industrial settings where system failures can 
have critical consequences. The framework’s strengths and 
limitations were thoroughly investigated upon experiments 
across diverse industry-relevant environments, providing 
insights into its potential for addressing key challenges in 
industrial control systems. However, the time-consuming 
system identification process may limit the applicability 
of the suggested framework for some high-dimensional 
systems. Future work should focus on optimizing the 
system identification process for high-dimensional tasks and 
exploring ways to mitigate the approach’s dependence on 
highly accurate models. In addition, while hyperparameter 
tuning in this study was performed manually through iterative 
refinement, effective for benchmarking purposes, future 
work may benefit from automated optimization methods 
such as Bayesian optimization to improve robustness and 
reduce tuning overhead in real-world deployments. To further 
improve scalability, future extensions could explore transfer 
learning, lightweight surrogate models, and distributed or 
multi-agent DRL implementations. In such settings, data-
sharing constraints and communication efficiency would 
become critical, and techniques like log-scale quantization 
may help reduce bandwidth requirements while preserving 
learning performance.
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