
AUT Journal of Mechanical Engineering

AUT J. Mech. Eng., 9(4) (2025) 357-372
DOI: 10.22060/ajme.2025.24021.6172

Enhancing the Reliability of Control Systems
Using an Improved Deep Reinforcement Learning Framework
Maryam Barekatain, Negin Sayyaf *

Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

ABSTRACT: This paper presents an improved framework for deep reinforcement learning algorithms
integrating online system identification, based on the Dyna-Q architecture. The proposed framework
is designed to tackle the challenges of both Multi-Input Multi-Output and Multi-Input Single-Output
systems in complex, industry-relevant environments, thereby significantly enhancing adaptability and
reliability in industrial control systems. It should be noted that in the suggested novel framework, the
system identification and model control processes run in parallel with the control process, ensuring
a reliable backup in case of faults or disruptions. To verify the efficiency of the aforementioned
approach, comparative evaluations in the presence of three of the most common deep reinforcement
learning algorithms, i.e. Deep Q Network, Deep Deterministic Policy Gradient, and Twin Delayed Deep
Deterministic Policy Gradient, are conducted on industry-relevant environments simulations available
in OpenAI Gym, including the Cart Pole, Pendulum, and Bipedal Walker, each chosen to reflect specific
aspects of the novel framework. Results demonstrate that the proposed method for leveraging both real
and simulated experiences in this framework improves sample efficiency, stability, and robustness.

Review History:

Received: Mar. 30, 2025
Revised: May, 09, 2025
Accepted: May, 25, 2025
Available Online: May, 30, 2025

Keywords:

Deep Reinforcement Learning

Industrial Control Systems

System

Stability

Model-Based Control

Intelligent Control Systems

357

1- Introduction
Control systems in industrial applications can be

interpreted as the foundation for ensuring efficient and
reliable operation. Traditional control methods, such as
Proportional-Integral-Derivative (PID) controllers [1] and
model-based approaches [2], have been the backbone of
industrial automation for decades, offering stability and
reliability. These methods are well-understood, relatively
easy to implement, and provide predictable performance
for stable and well-characterized processes. However, the
growing complexity of industrial environments and the need
for intelligent, adaptable control systems are pushing the
boundaries of traditional approaches [3].

Traditional control methods excel in scenarios where
system dynamics are well-defined and do not change
significantly over time. They can provide robust performance
in steady-state conditions and are typically straightforward
to design and tune. However, they struggle in environments
where system parameters vary, where there are unforeseen
disturbances, or where the control objectives change
frequently. Therefore, they often fall short in environments
that demand intelligent adaptability and compatibility with
dynamic conditions [4–6].

As industries evolve, the need for smart control systems
that can learn and adapt to changes autonomously has become

increasingly evident [7, 8]. Furthermore, according to the
complexity, nonlinearity, and time-variance of most industrial
systems, Reinforcement Learning (RL) offers a compelling
alternative by providing a framework where controllers can
learn directly from their environment. It allows the controller
to learn through exploration and interaction to uncover
optimal actions, which results in continuously improving
performance for the control signal [9]. Also, RL controllers
can adapt to system conditions by learning the ongoing
dynamics, reducing the need for extensive reprogramming.

However, implementing RL in industrial applications
presents challenges because the initial knowledge base
for RL controllers can be more complex than traditional
methods. Additionally, ensuring stability during the learning
process is crucial, as disruptions like sensor malfunctions or
communication failures can arise unexpectedly. In industrial
systems, sensor malfunctions can result in inaccurate or
missing data, disrupting the controller’s ability to make
proper decisions, which may lead to suboptimal performance
or unsafe conditions. Similarly, communication disruptions
between sensors, controllers, or actuators can delay critical
signals or feedback loops, increasing the risk of equipment
damage, downtime, and process instability [10]. To partially
overcome these challenges, model-based RL approaches
provide certain advantages by incorporating an internal
model of the environment, which can enhance both safety and
efficiency compared to model-free methods [11].

*Corresponding author’s email: n.sayyaf@eng.ui.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/ajme.2025.24021.6172
https://orcid.org/0000-0002-1315-5250

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

358

The Dyna-Q algorithm, proposed by Sutton (1990) [12,
13], is a model-based RL approach that combines model-
free learning with an internal model of the environment. In
the Dyna-Q framework, the agent learns both a policy and a
dynamics model of the environment. This allows the agent
to generate simulated experiences, in addition to learning
from real interactions, which can significantly improve
sample efficiency. It is worth noting that Dyna-Q is not
model-dependent (like the classic Model Predictive Control
approach), but uses the model as a complementary part of the
architecture.[14].

Dyna-Q has been successfully applied to a variety of
control problems, demonstrating its ability to enhance the
performance of model-free reinforcement learning algorithms.
However, the initial Dyna-Q studies and many of its early
adaptations utilized tabular approaches for both the planning
and learning processes, which restricts its applicability
to more complex, high-dimensional environments [15].
To address this limitation, researchers have explored the
integration of Dyna-Q with neural networks (NN), leading
to the development of the Deep Dyna-Q (DDQ) framework
[16]. DDQ is proposed as a combination of Dyna-Q and deep
learning methods, using NNs to model the state-action space.

Building upon the success of DDQ, several studies have
explored the integration of DDQ with deep reinforcement
learning (DRL) algorithms, such as deep Q-network (DQN).
The study in [17] refers to this combination as Dyna-DQN.
The authors aim to demonstrate the effectiveness of k-step
rollouts in planning compared to single-step rollouts in
achieving control outcomes. The authors also examine the
planning shape effectiveness with perfect and imperfect
models. The work in [18] presents an energy management
system (EMS) architecture based on Dyna RL, which
integrates the concepts of the Dyna framework and the DQN
algorithm. The paper’s results highlight that Dyna-DQN
outperforms both Q-Learning and DQN.

In addition, authors in [19] studied DDQ as model-
based learning to improve learning speed and applied it to
robot formation change. The results showed that DDQ can
improve the number of episodes by about half compared to
DQN. Also, the study in [20] investigates the Model-assisted
Bootstrapped Deep Deterministic Policy Gradient (DDPG)
algorithm in robotic environments, focusing on managing
agent uncertainty to optimize artificial data usage in high-
uncertainty scenarios. In [21], the authors extend DRL for
vision-based navigation by using a DDQ learning algorithm
to enable a robot to navigate and evacuate environments
with varying types and configurations of static and dynamic
obstacles.

In short, prior works integrating Dyna-Q concepts into
reinforcement learning frameworks have shown promising
results across multiple environments. However, these
approaches generally lack comprehensive benchmarking
across widely recognized RL algorithms, limiting insight into
their general applicability. Moreover, their architectures are
often tailored to specific task settings and do not emphasize
modular design, making them less adaptable to varied system

configurations.
In parallel with these Dyna-Q-inspired approaches,

recent model-based deep reinforcement learning methods
such as DreamerV3 [22], PlaNet [23], and MBPO [24] have
shown strong performance in visual and continuous control
benchmarks by learning compact latent dynamics models.
While these works focus on high-dimensional perception and
end-to-end policy learning, the proposed framework in this
paper emphasizes modularity and adaptability in industrial
control settings with parallel system identification and control
modules.

The main intuition of the paper originates from industrial
control applications, where disruption, sensor malfunction, or
disconnection from the controller can lead to major defects.
These failures are critical, as industrial systems rely on the
continuous transmission of essential data to generate accurate
control signals and maintain optimal performance. Motivated
by these real-world challenges, this paper introduces a
novel solution: an RL-based control approach that operates
independently, supported by an online system identification
module. This combination addresses vulnerabilities caused by
sensor failure or communication loss, while also maintaining
a continuously updated model that serves as a reliable backup
data generator, sustaining the control loop when the actual
system cannot fulfill the data requirements.

In addition to enhancing reliability, the proposed
approach can reduce the cost and risk associated with real-
world exploration in reinforcement learning environments.
The online model enables the generation of supplementary
training data, decreasing the reliance on expensive or unsafe
physical transitions during the RL training phase, which is an
important consideration in industrial settings.

Continuing the mentioned path, this paper presents a novel
framework based on the Dyna-Q architecture, developed for
DRL combined with online system identification, applied to
Multiple Input Multiple Output (MIMO) and Multiple Input
Single Output (MISO) systems. The analysis focuses on both
continuous and discrete, industry-relevant environments,
particularly those that reflect real-world industrial challenges
and require robust, adaptive control in both simple and
complex scenarios. The online system identification
component continually updates the model of the system,
providing a reliable backup in case of sensor failure or
communication disruptions. This framework aims to enhance
operational robustness for industrial control systems by
reducing sensitivity to unforeseen challenges. Moreover, by
learning from a simulated environment alongside real-world
interactions, this approach reduces the number of real-world
trials, thereby minimizing potential risks associated with
exploration in industrial systems.

For comparative analysis, the proposed framework is first
evaluated on basic and commonly used DRL algorithms: DQN
and DDPG. These algorithms are primarily applied to simpler
environments and MISO systems, where they have shown
effectiveness in handling relatively straightforward control
problems. However, for MIMO systems, which are naturally
more complex, the Twin Delayed Deep Deterministic Policy

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

359

Gradient (TD3) algorithm is employed, which is known for
its robustness and superior performance in continuous control
tasks [25]. TD3 has emerged as one of the most reliable and
fastest algorithms for MIMO systems, making it an ideal
candidate for benchmarking this framework.

To thoroughly observe the performance of the proposed
framework, the results of its integration with three
DRL algorithms are provided using industry-relevant
environments, including the inverted pendulum and robot
walking simulations available in OpenAI Gym [26].

In summary, this paper offers two key contributions to the
field of reinforcement learning:

Introduction of a novel DRL-based control framework that
integrates the online system identification to address critical
industrial challenges such as sensor failure, data loss, and
unsafe exploration (The framework ensures robust control
by enabling the RL agent to operate independently while
leveraging a continuously updated system model as a backup
for control signal generation and training data augmentation.)

Extensive practical study of the proposed framework in
both MIMO and MISO systems under discrete and continuous
control settings (The evaluation spans a range of industry-
relevant tasks and systematically examines the interaction
between model accuracy, control signal complexity, and DRL
performance.)

The paper is organized as follows. The following section
goes through the details of the utilized algorithms in this study,
i.e., DQN, DDPG, TD3. Section 3 is devoted to a detailed
explanation of the proposed framework. The results of the
suggested framework application in three environments with
benchmark DRL algorithms are also compared and discussed
in Section 4. Finally, the paper is concluded in Section 5.

2- Algorithms
In this section, a thorough review of the experimental

algorithms used in this paper is presented. First, the
fundamental ideas and core concepts of RL will be explained.

Reinforcement Learning (RL) is a branch of machine
learning where an agent learns to make decisions by
interacting with its environment through trial and error. The
agent aims to maximize cumulative rewards over time, as a
way of improving its decision-making policy. In other words,
RL involves the agent performing actions and receiving
rewards based on outcomes [27].

At its core, RL is about learning from interaction. The
agent interacts with an environment defined by states and
actions. The fundamental elements include:

State (S): Represents the current situation of the
environment.

Action (A): The act selected by the agent based on the
obtained policy, aiming to maximize future reward.

Reward (R): Feedback from the environment based on the
action taken.

Policy (π): The agent’s strategy for choosing actions in
different states, which can be deterministic or stochastic.

Value Function (V): The prediction of future rewards used
to evaluate the goodness of a state.

Q-Value (Q): Represents the value of a state-action pair.
The primary goal of RL is to discover a policy that

maximizes the expected sum of rewards over time. RL excels
in environments where the dynamics are unknown or partially
known. The agent learns through exploration, trying different
actions, and observing the results. This trial-and-error process
enables the agent to develop a robust policy even in complex
and dynamic settings, much like how humans learn from
experience [28].

RL algorithms are typically categorized into two main
types based on their approach to learning [29]:

Value-Based Methods: These methods focus on estimating
the value functions. The most fundamental value-based
method is Q-learning [30], which directly learns the value of
action-state pairs and uses these values to form a policy.

Policy-Based Methods: These methods directly learn
the policy that maps states to actions without learning value
functions explicitly. Policy Gradient methods are a common
example [31].

In addition, actor-critic methods combine both value-
based and policy-based approaches. The actor updates the
policy (policy-based), while the critic evaluates the action
taken by the actor by estimating value functions (value-
based). This dual approach leverages the strengths of both
methods, resulting in more stable and efficient learning [32].

The evolution to DRL has seen the Q-learning algorithm
significantly develop with the advent of NNs as function
approximators [30, 33]. This development has led to DRL,
which allows RL to scale to previously intractable problems,
such as learning to play video games directly from pixels.
In this study, DQN, DDPG, and TD3, as the most widely
used DRL algorithms, are used to evaluate the suggested
framework. To this end, brief descriptions of these algorithms
related to how they work, and their pros and cons, can be
observed in the following.

2- 1- Deep Q-Network
DQN is a value-based algorithm that combines Q-learning

with NNs to handle high-dimensional sensory inputs [34].
The essential idea is to use an NN to approximate the
Q-function, (), ;Q s a θ . Additionally, to break the temporal
correlations between consecutive experiences and stabilize
training, DQN uses an experience replay buffer. The agent
stores past transitions ()1 , ,, tt tt ra ss + in a replay buffer and
samples random mini-batches to train the network, where

 , t ts a and tr respectively represent the state, action, and
reward at the current timestep, and 1ts + denotes the next state
in the environment. Finally, by setting a separate network
for the calculation of the target Q-value, the learning process
becomes more robust and stable. Indeed, the algorithm takes
advantage of the Bellman equation in Eq. (1) for calculating
target values [35]. Hence, by performing the gradient descent
step on the loss function in Eq. (2), the Q-values are updated
until the Q-function is optimal.

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (1)

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

360

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (2)

It should be noted that in the aforementioned equations, γ
is the discount factor that determines the importance of future
rewards compared to immediate rewards. N represents the
minibatch’s size, and θ represents the parameters of the NN.
Q′ and a′ are also the target Q-network and the next action,
respectively. ty is the estimated Q-value at timestep t.

2- 2- Deep Deterministic Policy Gradient
DDPG is an actor-critic algorithm designed for

environments with continuous state and action spaces. It
maintains a deterministic policy (|)s µµ θ and updates the
actor and critic networks alternately [36]. To stabilize training,
DDPG employs target networks for both the actor and critic,
used to compute the target values for the Bellman equation.
The critic and actor update equations are respectively defined
in

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (3)

and

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (4)

where µθ and Qθ are the parameters of the actor and

critic networks, while 'µ and 'Q represent the target critic
and target actor networks, respectively.

Since DDPG uses a deterministic policy, exploration
during training is achieved by adding noise to the action
selected by the actor network. Also, to maintain more stability
in learning, the target values are constrained to change slowly,
using soft target updates in Eq. (5).

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (5)

In Eq. (5), τ represents the small update rate and µθ ′

and Qθ ′ denote the target critic and target actor networks’
parameters, respectively.

Twin Delayed Deep Deterministic Policy Gradient
TD3 improves upon DDPG by addressing the

overestimation bias in the value function. To this end, the
agent employs two critic networks, specified by parameter
vectors 1θ ′ and 2θ ′ for estimating the Q-values, i.e.

1
)(,Q s aθ ′ and 2)(,Q s aθ ′ , to provide a more cautious

estimation of the Q-value [25]. In more detail, the TD3 agent
takes the minimum of these two Q-values to determine the
target for the critic update, Eq. (6), during training. Because
action selection is governed by the policy, the target value for
updating the target critic is calculated as follows.

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (6)

Moreover, TD3 introduces target policy smoothing to

further stabilize the training process. This technique adds
a small amount of noise to the action selected by the target
policy network when computing the target Q-value. Also,
TD3 delays the update of the actor (policy) network as for
every d critic update, the actor network is updated once. This
delayed update prevents the policy from changing too rapidly
in response to potentially inaccurate Q-value estimates.
During training, the critic is updated by minimizing the loss
function, and the actor is updated using the deterministic
policy gradient. Accordingly, the critic and actor update
equations can be modified as follows:

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (7)

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (8)

In the above equations, the jθ refers to the j-th critic
network’s parameters.

3- Proposed Framework
In advanced problems based on Reinforcement Learning

algorithms, one prominent strategy for improving efficiency
is the Dyna-Q approach. Dyna-Q represents an extension
of the RL architecture, which integrates learning from real
experiences with simulated experiences drawn from a model
of the environment. This model-based learning paradigm
enhances data efficiency by supplementing direct interactions
with the environment [12, 13]. Through the indirect RL phase,
the agent does not interact with the real environment, but it
updates the policy using simulated experiences generated
by the internal model. However, the traditional Dyna-Q
framework is primarily designed for tabular RL methods
and struggles to extend to high-dimensional continuous
spaces, particularly in MIMO settings [15]. To address these
challenges, this paper proposes a novel framework designed to
handle a variety of RL tasks, particularly in high-dimensional
continuous control applications.

The proposed framework, described in Fig. 1, is composed

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

361

of three key processes: the control process, the system
identification process, and the model control process. These
components work in parallel to support both policy learning
and environment dynamics modeling, providing a flexible
and adaptive solution for various DRL tasks and real-world
industrial applications.

It is worth noting that while this study evaluates the
framework using DQN, DDPG, and TD3, these algorithms
are selected solely for benchmarking purposes. The
architecture of the framework is designed to be modular
and algorithm-agnostic, allowing any RL or DRL algorithm
to be integrated as the control agent. The control process,
system identification process, and model control process are
implemented as independent modules, making the framework
broadly applicable across various RL paradigms.

Throughout this paper, three distinct processes
are referred to: the control process, involving real-
environment interactions; the model control process, in
which data generated by the learned model is used; the
system identification process, through which the model is
continuously updated using collected transitions; and the
policy learning, defined as the training of the RL agent using
both real and model-generated transitions. In the following
sections, each component of the framework, as represented in
the block diagram, is explained in detail.

3- 1- Control Process
The Control Process manages policy learning, enabling

the agent to interact with the environment and optimize its
decisions. As illustrated in Figure 1, this process relies on

neural networks, with two primary architectures: Q-Networks
(used in DQN for value-based learning) and Actor-Critic
Networks (used in DDPG and TD3 for continuous control
tasks). These networks allow the agent to approximate the
optimal policy by learning from the environment’s feedback,
which is obtained through probabilistic transitions represented
as '(| ,)P s s a and reward functions '(, ,)R s a s .

This process supports both discrete and continuous
action spaces and can be adapted to various RL problems by
switching between value-based or actor-critic algorithms.
The inclusion of algorithms such as DQN, DDPG, and TD3
ensures that the framework can be specialized for different
environments, including MISO and MIMO applications.

3- 2- System Identification Process
To handle the complexity of high-dimensional

continuous environments, the framework integrates a system
identification process for learning the underlying dynamics
of the environment. To implement the online system
identification module, a feedforward neural network trained
via supervised learning is used to approximate the system’s
transition dynamics and reward function [37]. The input to
this model is a concatenated vector of the current environment
state ts and the action taken ta , i.e. [],t ts a , and the output
consists of the predicted next state 1t̂s + and the corresponding
reward t̂r . The neural network is trained using randomly
sampled mini-batches of transitions ()1, , ,t t t ts a s r+ collected
online during interaction with the real environment. The loss
function used for training is defined as the mean squared
error (MSE) between the predicted and actual outcomes in

Fig. 1: Block diagram of the proposed framework
(Remark: the policy learning in DQN algorithm is done via Q-network, while the policy is learned via actor and critic networks in

DDPG and TD3 algorithms)

Fig. 1. Block diagram of the proposed framework (Remark: the policy learning in DQN algorithm is done via
Q-network, while the policy is learned via actor and critic networks in DDPG and TD3 algorithms)

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

362

Eq. (9) [38]. This supervised learning setup assumes the
environment’s dynamics are stationary and continuous over
short time windows and the outputs are bounded, which
allows the neural network to adaptively approximate the
evolving system behavior.

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

 (9)

 As depicted in Fig. 1, the aforementioned model network
approximates the environment’s transition dynamics,
learning to map from an action state pair to a new state and
reward prediction. By modeling these dynamics, the agent
can simulate environment interactions and generate synthetic
experiences, reducing reliance on real-world data.

This modeling process provides a key advantage in
situations where data collection is costly or time-consuming.
The ability to learn and predict the environment’s behavior,
parallel to the other ongoing processes in the system, allows
for more efficient policy learning, enabling the agent to
improve its performance without requiring extensive real-
world interaction. This partnership also keeps the control
process steady during disruptions and data reliability issues,
taking the backup role for real interactions in the model
control process as illustrated in the diagram of Fig. 1.

3- 3- Model Control Process
The model control process facilitates seamless interaction

between the control process and the system identification
process. As shown in Fig. 1, it enables the agent to update
its policy using both real and simulated experiences, thus
bridging the gap between model-based and model-free
learning. During the model episodes, the data used for policy
learning is generated by the model that updates through
the system identification process. By continually refining
the model of the environment, the agent can enhance the
controller’s performance through simulated experiences and
rely on model feedback in case of disruption.

The combination of real and simulated experience, enabled
by the model control process, ensures that the framework
can be applied to a wide range of applications, particularly
those involving high-dimensional continuous spaces such as
robotic control, autonomous driving, and advanced MIMO
systems.

3- 4- Training Episode Scheduling Strategy
The online system identification process begins at the

very start of training and continuously updates the model
in parallel with the control and model control processes,
using transitions collected directly from real-environment
interactions. After the fixed episode threshold switchT , i.e. a
hyperparameter that should be tuned based on the complexity
of the system, the framework begins to alternate between real
control episodes and model control episodes. The selection
is governed by a probability parameter [0,1]β ∈ , such that

a real control episode is executed with probability β , and
a model control episode is executed with probability 1 β− .
This switching mechanism is designed to balance exploration
in the real environment and exploitation of the learned
model, and can be tuned based on environment complexity
and model training performance. Hence, the episode type can
be selected using a uniform random variable (0,1)z u as
shown in Eq. (10)

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11)

(10)

where RE and ME respectively denote the real episodes
during the control process and the model episodes during the
model control process, and episodeN refers to the number of
episodes passed.

It is worth noting that while the current switching strategy
between the control process and model control process is
defined probabilistically for benchmarking purposes, in
practical deployment, this mechanism can be adapted to
respond directly to real-world conditions such as sensor
failures or communication disruptions. Since the system
identification module operates online and continuously from
the beginning of training, the model remains up-to-date and
can serve as a reliable fallback when such challenges arise.

The following section evaluates the performance of the
framework across three industry-relevant environments in
OpenAI Gym. The benefits and limitations of this framework
will be discussed in the context of MIMO and MISO
environments, considering both continuous and discrete
action spaces.

4- Numerical Simulations
The results of applying the proposed framework based on

three DRL algorithms are investigated in this section, focusing
on how it performs in simple and complex environments.
In the following subsections, dedicated to the evaluation of
DQN, DDPG, and TD3 algorithms respectively, first, the
general features of the simulation environments are detailed,
and then it’s followed by the results and discussion of the
Dyna-Q-based framework experiments.

To validate the defined approach, the collected reward
by the agent through episodes, during both RL control and
model control, and the loss of each environment’s modeling
process are provided. The increases and decreases in model
loss curves indicate weak and strong models, respectively.
To evaluate the contribution of the model-generated data,
performance in model control episodes is compared with that
in real control episodes. Although the learning trajectories may
differ, both converge to similar performance levels, indicating
that the model successfully supports policy refinement. This
demonstrates that the model control process can generate data

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

363

of sufficient quality to guide the agent toward solving the
environment, complementing real-environment interactions.

According to the statistical inherent of the data-driven
algorithms, to evaluate the proposed framework in the
presence of DQN, DDPG, and TD3 algorithms in the
following environments, the corresponding experiments have
been run via different seeds 10, 20, 30, 40, and 50. To ensure
the high efficiency of the proposed novel approach, the
graphs in each subsection have been plotted corresponding
to the worst case, i.e. the latest convergence to the optimal
response.

The role of hyperparameters in both the control signal
learning and system modeling phases is also examined.
Parameters such as learning rate, network architecture, batch
size, and exploration noise were initially selected based on
commonly reported values in the literature and subsequently
refined through an iterative trial-and-error process, guided
by the observed learning behavior and the complexity of
the environment. It should be noted that in both simulation
studies and practical applications, hyperparameter tuning
must be performed individually for each plant or system, as
the optimal configuration is highly dependent on the system’s
specific dynamics and task characteristics.

It is worth mentioning that both the policy learning
and system identification modules are trained using first-
order gradient-based methods, resulting in computational
complexity that scales polynomially with the number of
model parameters and input dimensions.

4- 1- Deep Q-Network Results
The outcome of integrating the framework with DQN

algorithm is evaluated on the Cart Pole environment from
OpenAI Gym. The following subsection provides details

about this environment.

4- 1- 1- Simulation Environment
Cart Pole is a part of the classic control environments

in OpenAI Gym. In this setup, a pole is attached by an
unactuated joint to a cart, which moves along a frictionless
track. The pendulum is placed upright on the cart, and the
goal is to balance the pole by applying forces to push the cart
left or right. Therefore, the action space is discrete with two
values. The state space is a 4-dimensional array in continuous
values of the cart’s position and velocity, and the pole’s angle
and angular velocity.

The reward function for the mentioned experiment
works relatively simply: 1 positive reward is given to each
action made, and the episode terminates if the pole angle is
greater than ±12° or the cart position is greater than ±2.4.
In each episode, the agent has 500 timesteps to interact with
the environment. To solve the environment, the agent must
achieve a score of around 500.

4- 1- 2- DQN Simulation Results
The best hyperparameters for RL control with DQN were

determined through trial and error. The agent interacted with
the environment for 500 timesteps, collecting rollouts, before
the learning process began. The learning rate, gamma, and
sample memory batch size are respectively set to 0.0003,
0.99, and 128. The exploration parameter, denoted as ϵ,
begins at 1.0 and decays to 0.03 with a decay rate of 1000
episodes. The NN architecture used in the algorithm consists
of three fully connected layers, each with 128 units.

As shown in Fig. 2, the agent interacts with the
environment for 700 episodes, where the agent’s performance
converges around episode 530, reaching a score of 500. It

Fig. 2: The obtained reward during RL control episodes, in the presence of DQN algorithm

Fig. 2. The obtained reward during RL control episodes, in the presence of DQN algorithm

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

364

is worth noting that the occasional drops in performance
are attributed to the small exploration rate, which continues
towards the end.

The next step involves incorporating the framework,
which requires an online model of the environment. To
construct this model, a two-layer NN is used to estimate
the environment’s dynamics based on experiences collected
during training. The modeling process employs a learning
rate of 0.001 and a memory sample batch size of 128. To
assess the effectiveness of the modeling process, the model’s
loss is observed.

As shown in Fig. 3, the loss reaches the 10−6 range,
indicating that the model has effectively learned to track the
environment’s dynamics. In the subsequent step, the proposed

approach is utilized by incorporating the environment
model into the control process. Approximately 20 percent of
the control episodes are dedicated to the model control, using
the model for the feedback signal to simulate interactions.

During this phase, shown in Fig. 4, the agent is given
150 timesteps to interact with the system’s model. In the
Cart-Pole environment, the reward function is defined such
that the agent receives a reward of +1 for every timestep it
successfully balances the pole. The environment is considered
“solved” or “done” when the agent reaches a total score of
500, which corresponds to the maximum of 500 timesteps
without failure. Accordingly, in the model control episodes
of this study, the episode length was set to 150 timesteps to
evaluate whether the agent could approach a comparable level
of performance using only model-generated experiences. It
is anticipated that, with sufficient interaction, the agent will
converge to a score of around 150 in these episodes, reflecting
the effectiveness of the learned model in replicating the Cart-

Pole reward structure.

4- 2- Deep Deterministic Policy Gradient Results
In this section, the DDPG algorithm, which employs a

more complex actor-critic structure, is integrated with the
framework to experiment with a more challenging version of
the Cart-Pole environment: The Pendulum.

4- 2- 1- Simulation Environment
The Pendulum environment consists of a pendulum fixed

at one end to a stationary point, with the other end free to
move. The objective is to apply torque to the free end to
swing the pendulum into an upright position. In this case, the
state space is continuous with 3 dimensions, consisting of the
pendulum’s position and angular velocity.

Also, the action space is continuous, defined by the torque
applied to the free end of the pendulum, ranging from −2 to
+2. Moreover, the reward function can be found in Eq. (11).

 1 max ' , ';t t ty r Q s a (1)

 2

1

1 , ;
N

i i i
i

L y Q s a
N

 (2)

1 1
1

2

1 ('(, '(|) |)

 (, |))

N
Q

i i i
i

Q
i i

L r Q s s
N

Q s a

 (3)

1

1 (, |) (|)
N

Q
a i i i

i
J Q s a s

N

 , (4)

 1
 1

Q Q Q

 (5)

1,2

1 1 ,
j

j
t t t ty r minQ s s

 (6)

2

1

1() ,
j

N

j i i i
i

y Q s a
N

 (7)

1

1 , | ·
i

N

a i ia s
i

J Q s a s
N

 ₁ (8)

 2 2

1

1 ˆ ˆ
N

model i i i i
i

L s s r r
N

 (9)

Scheduling strategy =

 ,

,
R episode switch

R episode switch

M episode switch

E if N T
E if N T z
E if N T z

 , (10)

 2 2 2 0.1 0.001r (11) (11)

4- 2- 2- DDPG Simulation Results

As the complexity of the algorithm and environment
increases, it becomes more challenging to obtain effective
control signals and accurate models during training.
Consequently, the significance of hyperparameters grows
with more advanced algorithms. To illustrate the impact of
hyperparameters on performance, two cases of RL control are
presented in Figs. 5 and 6.

Though both figures use a three-layer neural network

Fig. 3: The environment model loss using the suggested framework, in the presence of DQN algorithm

Fig. 3. The environment model loss using the suggested framework, in the presence of DQN algorithm

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

365

Fig. 4: The acquired reward during model control episodes, in the presence of DQN algorithm

Fig. 4. The acquired reward during model control episodes, in the presence of DQN algorithm

Fig. 5: The obtained reward during RL control episodes using the DDPG algorithm with untuned hyperparameters

Fig. 5. The obtained reward during RL control episodes using the DDPG algorithm with untuned hyperparameters

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

366

with dimensions of 256 × 256 and a batch size of 256, Fig.
5 shows the unstable and unresolved learning results, where
the learning rate, γ, and τ are set to 0.0003, 0.99, and 0.005,
respectively. Additionally, the noise standard deviation is set
to 1, and the policy is updated at every timestep after the first
2000 timesteps. Whereas Fig. 6 demonstrates the outcome
of proper hyperparameter tuning. Here, the learning rate, γ,
and τ are adjusted to 0.0001, 0.98, and 0.02, respectively,
and the policy update frequency is set to 50. Furthermore,
the exploration noise standard deviation decreases gradually
from 0.2 to 0.05 during the first 200 episodes of the process.

To proceed with the first step of the provided approach,
which involves model learning, it is crucial to consider the
role of hyperparameters in model design. As illustrated
in Figs. 7 and 8, the importance of hyperparameter tuning
increases with the complexity of the environment. Fig. 7
shows that a model with a two-layer NN (128 × 128) results
in suboptimal performance. In contrast, the desired model
performance, achieved with a three-layer NN (256 × 256), is
demonstrated in Fig. 8.

It is now clear that the complexity of the environment,
including the action space and reward function, affects the
modeling process, potentially leading to an increase in loss
compared to simpler environments.

Moving on to the second step, Fig. 9 illustrates the results
of model control episodes. In this environment, the agent
aims to keep the pendulum upright by applying continuous
torques, and performance is measured by cumulative reward,
with optimal policies approaching a score close to zero (since
the reward is negative and penalizes deviation from the

upright position). The similarity in the trend and final reward
between the control episodes in Fig. 6 and model control
episodes in Fig. 9 indicates that the policy learned from
model-generated data is effectively contributing to the task.
Despite differences in learning paths, both curves converge
to comparable performance, demonstrating that the model
is capable of producing sufficiently accurate transitions to
support policy refinement in parallel with real interactions.

4- 3- Twin Delayed Deep Deterministic Policy Gradient
Results

To validate the introduced framework in the presence of
TD3 algorithm, the examination environment becomes more
complex as it involves a MIMO system. The experiments
using the mentioned approach with TD3 are carried out
in the Bipedal Walker environment, part of the Box2D
environments available in OpenAI Gym. This setup allows
us to observe the impact of transitioning from MISO to
MIMO high-dimensional systems on the efficiency of this
framework, especially as the complexity of the learning
algorithm increases.

4- 3- 1- Simulation Environment
The Bipedal Walker environment simulates a 4-joint

robot. The significance of this examination lies in its high-
dimensional, multi-output nature. The state space is a
27-element array, consisting of hull angle speed, angular
velocity, horizontal and vertical speed, positions of joints,
joints’ angular speeds, legs’ contact with the ground, and 10
lidar rangefinder measurements.

The action space is a 4-element array representing the

Fig. 6: The obtained reward during RL control episodes using the DDPG algorithm with tuned hyperparameters

Fig. 6. The obtained reward during RL control episodes using the DDPG algorithm with tuned hyperparameters

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

367

Fig. 7: The environment model loss using the suggested framework, in the presence of DDPG algorithm with untuned

hyperparameters

Fig. 7. The environment model loss using the suggested framework, in the presence of DDPG algorithm with
untuned hyperparameters

Fig. 8: The environment model loss using the suggested framework, in the presence of DDPG algorithm with tuned
hyperparameters

Fig. 8. The environment model loss using the suggested framework, in the presence of DDPG algorithm with tuned
hyperparameters

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

368

motor speed values for each of the 4 joints (hips and knees).
The reward function considers the environment solved if the
agent achieves a score of +300 within 1600 timesteps. If the
robot falls, it incurs a penalty of -100 points, and applying
motor torque reduces the score by a small amount. A more
optimal agent will attain a higher score.

4- 3- 2- TD3 Simulation Results
In Figs. 10 and 11, a comparison of hyperparameters

for the RL control process is provided. Focusing on the

differences in hyperparameters, changes such as increasing
the critic learning rate from 0.0001 to 0.0003, adjusting
the sample batch size from 128 to 200, modifying the NN
architecture from a three-layer 256 × 256 to a three-layer
400 × 300, and altering the policy update frequency from 4
to 2 significantly improved the learning curve, preventing
instability and suboptimal performance as shown in Fig.
10. With proper hyperparameter tuning, the control process
demonstrated strong performance, converging to a score of
300, as illustrated in Fig. 11.

Fig. 9: The acquired reward during model control episodes, in the presence of DDPG algorithm

Fig. 9. The acquired reward during model control episodes, in the presence of DDPG algorithm

Fig. 10: The obtained reward during RL control episodes, in the presence of TD3 algorithm with untuned hyperparameters

Fig. 10. The obtained reward during RL control episodes, in the presence of TD3 algorithm with untuned
hyperparameters

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

369

Now, moving on to the modeling and model control
phases, the results of the modeling process are shown in
Figs. 12 and 13. Designing an online model in this case is
much more time-consuming and computationally intensive,
considering the complexity of the MIMO system compared
to the earlier ones. As a result, the general accuracy of the
model has decreased. However, properly adjusting the
hyperparameters for the corresponding neural networks can
still significantly improve the model’s performance. By
upgrading from a 3-layer 256 × 128 network with a batch size

of 128 to a -4layer 300 × 400 network with a batch size of 100,
the model loss curve improved from Fig. 12 to Fig. 13.

For the model control episodes, 20% of the total episodes
are dedicated to the simulated interactions in model, with
each episode spanning 1200 timesteps. However, the model
control episodes only begin after approximately 180 episodes
of RL control have been completed. This decision was
made because the modeling process required more time and
collected rollouts to establish a solid baseline model before
starting the model control phase. To ensure an effective

Fig. 11: The obtained reward during RL control episodes, in the presence of TD3 algorithm with tuned hyperparameters

Fig. 11. The obtained reward during RL control episodes, in the presence of TD3 algorithm with tuned hy-
perparameters

Fig. 12: The environment model loss using the suggested framework, in the presence of TD3 algorithm with untuned

hyperparameters

Fig. 12. The environment model loss using the suggested framework, in the presence of TD3 algorithm with
untuned hyperparameters

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

370

learning process, the rewards obtained from the model
episodes were constrained to the range of -300 to 400.

Fig. 14 shows the learning curve of the model control
episodes, highlighting the model’s performance, which is
relatively close to that expected for the actual bipedal system.
In the Bipedal Walker environment, the agent must learn to
coordinate continuous joint actions to walk across uneven
terrain, with episode rewards typically ranging from -100
(failure) to 300 (successful walking). The convergence of

the model-based learning curve toward the expected reward
range indicates that the model is capable of generating
realistic transitions and supporting effective policy learning,
even in this more complex MIMO control setting.

It should be noted that all experiments were conducted on
a Dell XPS 15 laptop equipped with a 12th Gen Intel® Core™
i7-12700H processor (20 CPUs, 2.30 GHz), 32 GB RAM,
and an NVIDIA GeForce RTX 3050 Laptop GPU. Training
time varied across environments and algorithms; for instance,

Fig. 13: The environment model loss using the suggested framework, in the presence of TD3 algorithm with tuned

hyperparameters

Fig. 13. The environment model loss using the suggested framework, in the presence of TD3 algorithm with
tuned hyperparameters

Fig. 14: The acquired reward during model control episodes, in the presence of TD3 algorithm

Fig. 14. The acquired reward during model control episodes, in the presence of TD3 algorithm

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

371

training with TD3 on the Bipedal Walker environment
required approximately 7 hours to converge, while Cart Pole
with DQN required around 40 minutes. The lightweight
model used in system identification enabled fast inference,
supporting near real-time performance in simulation.

5- Conclusion
In this study, an improved framework for DRL was

presented that integrates online system identification, based
on the Dyna-Q approach. The parallel operation of system
identification and model control processes with the control
process in the suggested approach provides a reliable backup
mechanism for industrial settings where system failures can
have critical consequences. The framework’s strengths and
limitations were thoroughly investigated upon experiments
across diverse industry-relevant environments, providing
insights into its potential for addressing key challenges in
industrial control systems. However, the time-consuming
system identification process may limit the applicability
of the suggested framework for some high-dimensional
systems. Future work should focus on optimizing the
system identification process for high-dimensional tasks and
exploring ways to mitigate the approach’s dependence on
highly accurate models. In addition, while hyperparameter
tuning in this study was performed manually through iterative
refinement, effective for benchmarking purposes, future
work may benefit from automated optimization methods
such as Bayesian optimization to improve robustness and
reduce tuning overhead in real-world deployments. To further
improve scalability, future extensions could explore transfer
learning, lightweight surrogate models, and distributed or
multi-agent DRL implementations. In such settings, data-
sharing constraints and communication efficiency would
become critical, and techniques like log-scale quantization
may help reduce bandwidth requirements while preserving
learning performance.

Acknowledgment
Our sincere gratitude to the generous support of the

Mobarakeh Steel Technology and Innovation Development
(MSTID) Company, under the contract number 1402-
1025222, which enabled us to carry out this study.

References
[1]  K.H. Ang, G. Chong, Y. Li, PID control system analysis,

design, and technology, IEEE Transactions on Control
Systems Technology, 13(4) (2005) 559–576.

[2] M. Morari, J.H. Lee, Model predictive control: past,
present and future, Computers & Chemical Engineering,
23(4–5) (1999) 667–682.

[3] A. Kuhnle, J.-P. Kaiser, F. Theiß, N. Stricker, G. Lanza,
Designing an adaptive production control system
using reinforcement learning, Journal of Intelligent
Manufacturing, 32 (2021) 855–876.

[4] D. Lee, S. Koo, I. Jang, J. Kim, Comparison of deep
reinforcement learning and PID controllers for automatic
cold shutdown operation, Energies, 15(8) (2022) 2834.

[5] Z. Wang, T. Hong, Reinforcement learning for building

controls: The opportunities and challenges, Applied
Energy, 269 (2020) 115036.

[6] X. Tao, D. Zhang, W. Ma, X. Liu, D. Xu, Automatic
metallic surface defect detection and recognition with
convolutional neural networks, Applied Sciences, 8(9)
(2018) 1575.

[7] P.J. Antsaklis, A. Rahnama, Control and machine
intelligence for system autonomy, Journal of Intelligent
& Robotic Systems, 91 (2018) 23–34.

[8] J.F. Arinez, Q. Chang, R.X. Gao, C. Xu, J. Zhang, Artificial
intelligence in advanced manufacturing: Current status
and future outlook, Journal of Manufacturing Science
and Engineering, 142(11) (2020) 110804.

[9] S. Spielberga, A. Tulsyana, N.P. Lawrenceb, P.D.
Loewenb, R.B. Gopalunia, Deep reinforcement learning
for process control: A primer for beginners, Journal,
65(10) (2019).

[10] Y.-J. Park, S.-K.S. Fan, C.-Y. Hsu, A review on fault
detection and process diagnostics in industrial processes,
Processes, 8(9) (2020) 1123.

[11] F.-M. Luo, T. Xu, H. Lai, X.-H. Chen, W. Zhang, Y. Yu, A
survey on model-based reinforcement learning, Science
China Information Sciences, 67(2) (2024) 121101.

[12] R.S. Sutton, Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming, Machine Learning Proceedings 1990,
Elsevier, 1990, pp. 216–224.

[13] R.S. Sutton, Dyna, an integrated architecture for
learning, planning, and reacting, ACM Sigart Bulletin,
2(4) (1991) 160–163.

[14] E. Vitolo, A. San Miguel, J. Civera, C. Mahulea,
Performance evaluation of the Dyna-Q algorithm for
robot navigation, in: 2018 IEEE 14th International
Conference on Automation Science and Engineering
(CASE), IEEE, 2018, pp. 322–327.

[15] S.P. Singh, Reinforcement learning with a hierarchy
of abstract models, in: Proceedings of the National
Conference on Artificial Intelligence, Citeseer, 1992, p.
202.

[16] B. Peng, X. Li, J. Gao, J. Liu, K.-F. Wong, Deep Dyna-Q:
Integrating planning for task-completion dialogue policy
learning, in: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), 2018, pp. 2182–2192.

[17] G.Z. Holland, The effect of planning shape on Dyna-
style planning in high-dimensional state spaces, PhD
diss., University of Alberta, 2018.

[18] H. Liu, Y. Yao, T. Li, M. Du, X. Wang, H. Li, M. Li,
Dyna algorithm-based reinforcement learning energy
management for fuel cell hybrid engineering vehicles,
Journal of Energy Storage, 94 (2024) 112526.

[19] A. Budiyanto, K. Azetsu, K. Miyazaki, N. Matsunaga,
On fast learning of cooperative transport by multi-robots
using DeepDyna-Q, in: 2022 61st Annual Conference of
the Society of Instrument and Control Engineers (SICE),
IEEE, 2022, pp. 1058–1062.

[20] G. Kalweit, J. Boedecker, Uncertainty-driven
imagination for continuous deep reinforcement learning,

M. Barekatain and N. Sayyaf, AUT J. Mech. Eng., 9(4) (2025) 357-372, DOI: 10.22060/ajme.2025.24021.6172

372

in: Conference on Robot Learning, PMLR, 2017, pp.
195–206.

[21] J. Kulhánek, E. Derner, T. de Bruin and R. Babuška,
Vision-based navigation using deep reinforcement
learning, in: 2019 European Conference on Mobile
Robots (ECMR), Prague, Czech Republic, 2019, pp. 1–8.

[22] D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap, Mastering
diverse control tasks through world models, Nature, 640
(2025) 647–653.

[23] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H.
Lee, J. Davidson, Learning latent dynamics for planning
from pixels, in: International Conference on Machine
Learning, PMLR, 2019, pp. 2555–2565.

[24] M. Janner, J. Fu, M. Zhang, S. Levine, When to
trust your model: Model-based policy optimization,
In: Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 2019, pp.
12519–12530.

[25] S. Fujimoto, H. Hoof, D. Meger, Addressing function
approximation error in actor-critic methods, in:
International Conference on Machine Learning, PMLR,
2018, pp. 1587–1596.

[26] P. Palanisamy, Hands-on intelligent agents with OpenAI
Gym, Packt Publishing Ltd., Birmingham, UK, 2018.

[27] R.S. Sutton, A.G. Barto, Reinforcement learning: An
introduction, MIT Press, Cambridge, MA, 2018.

[28] Cs. Szepesvari, Algorithms for reinforcement learning,
Morgan & Claypool Publishers, Switzerland, 2010.

[29] Y.-t. Liu, J.-m. Yang, L. Chen, T. Guo, Y. Jiang, Overview
of reinforcement learning based on value and policy, in:
2020 Chinese Control and Decision Conference (CCDC),
IEEE, 2020, pp. 598–603.

[30] C.J. Watkins, P. Dayan, Q-learning, Machine Learning,
8 (1992) 279–292.

[31] R.S. Sutton, D. McAllester, S. Singh, Y. Mansour,
Policy gradient methods for reinforcement learning with
function approximately, Advances in Neural Information
Processing Systems, 12 (2000) 1057–1063.

[32] D. Bennett, Y. Niv, A.J. Langdon, Value-free
reinforcement learning: Policy optimization as a minimal
model of operant behavior, Current Opinion in Behavioral
Sciences, 41 (2021) 114–121.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J.
Veness, M.G. Bellemare, A. Graves, M. Riedmiller,
A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature, 518(7540)
(2015) 529–533.

[34] N. Gobinathan, R. Ponnusamy, Deep-Q-based
reinforcement learning method to predict accuracy of
Atari gaming set classification, in: 2023 International
Conference on Data Science, Agents & Artificial
Intelligence (ICDSAAI), Chennai, India, 2023, pp. 1–4.

[35] R. Bellman, Dynamic Programming, 1st Ed., Princeton
University Press, Princeton, NJ, USA, 1957.

[36] H. Tan, Reinforcement learning with deep deterministic
policy gradient, in: 2021 International Conference
on Artificial Intelligence, Big Data and Algorithms
(CAIBDA), Xi’an, China, 2021, pp. 82–85.

[37] R.Y. Choi, A.S. Coyner, J. Kalpathy-Cramer, M.F.
Chiang, J.P. Campbell, Introduction to machine learning,
neural networks, and deep learning, Translational Vision
Science & Technology, 9(2) (2020) 14.

[38] J. Terven, D.-M. Cordova-Esparza, J.-A. Romero-
González, A. Ramírez-Pedraza, E.A. Chávez-Urbiola,
A comprehensive survey of loss functions and metrics
in deep learning, Artificial Intelligence Review, 58(7)
(2025) 195.

HOW TO CITE THIS ARTICLE
Maryam Barekatain and Negin Sayyaf, Enhancing the Reliability of Control Systems Using an
Improved Deep Reinforcement Learning Framework, AUT J. Mech Eng., 9(4) (2025) 357-372.

DOI: 10.22060/ajme.2025.24021.6172

https://www.amazon.com/Praveen-Palanisamy/e/B07GCSBXFH/ref=dp_byline_cont_book_1
https://dx.doi.org/10.22060/ajme.2025.24021.6172

