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Abstract: 
 

Integrated Guidance and Control (IGC) is a method devised in a framework in which guidance and 

control are considered integrated within, and unified rather than independent of each other. The 

advantage of IGCs is their ability to use interactions between guidance and control subsystems. 

This methodology is employed, intended to increase the performance of the Flying Vehicle by 

taking advantage of the synergy between the two processes of guidance and control. This article 

describes the process of designing and simulating the performance of the online model predictive 

controller, which was devised in order to guide the Flying Vehicle in a three-dimensional scenario 

to minimize the time to collision as well as the miss distance to the target. As for the controller 

design, an online predictive model is devised. In general, the controller model can be implemented 

in two ways: online (implicit) and offline (explicit). In the implementation of the online type, the 

optimization problem of the control cost function is solved online in each time step, and The 

solution to this problem will determine the optimal control signal. According to the simulations, it 

was shown that the use of the proposed controller and the application of the integrated guidance 

and control model, led to smaller values for the Flying Vehicle-target miss distance and the time 

to collision as compared to those from the PID and LQR controllers. 
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1. Introduction 

Guidance, navigation and control functions are critical to all forms of air and space vehicles, including 

missiles. In practice, these functions work together in series to maneuver a vehicle. It is now common to 

develop guidance completely separate from control (autopilot) and vice versa. Almost all textbooks and 

technical articles on this topic have dealt with it [1]. 

Some more advanced guidance algorithms not only achieve interception, but also control the interception 

angle of the missile upon impact. However, all these algorithms are rooted in the collision triangle concept, 

which minimizes the change of line of sight between the interceptor and the target, and may suffer from 
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instability at the end of the task. In a multi-loop structure, steering is generated using engagement 

kinematics while the autopilot stabilizes the body dynamics and follows the acceleration provided by the 

steering. 

Unlike the conventional three-loop autopilot structure, Integrated Guidance and Control (IGC) is an 

integrated framework in which guidance and control are considered to be integrated within rather than 

independent of each other. 

The advantage of IGC is its ability to use interactions between command and control subsystems. IGC 

intends to increase the performance of the missile by taking advantage of the synergy between the guidance 

and control processes. Depending on the structure of the IGC, some provide additional feedback paths in 

the flight control system, while others require less. Putting G&C into a single IGC system improves its 

optimization potential. Because optimization of parameters can be done directly. Cost functions include key 

performance parameters such as missile and target relative speed of approach, line-of-sight angle, impact 

angle, and many parameters not readily available to autopilot are now directly available. In the conventional 

approach, the guidance law has no knowledge of the amount of spin or acceleration applied to the missile, 

instead, guidance only knows the relative position and speed of engagement. As the range-target decreases, 

small changes in geometry result in large acceleration commands that can exceed the performance range of 

the autopilot. In addition, the autopilot cannot adjust itself based on relative engagement kinematics, as it 

does not receive this information. As a result, conventional G&C systems rely on making the autopilot time 

constant as small as possible to improve stability. The autopilot time constant designs the distance from 

miss to target in conventional G&C systems [2].The integrated guidance and control (IGC) framework 

combines the objectives of guidance and control systems to leverage their synergy. The primary merits of 

this approach include reduced time to collision, improved trajectory tracking, and better stability under 

dynamic conditions. These merits are quantitatively evaluated in terms of minimized miss distance, shorter 

interception time (t), and smoother control inputs, as detailed in the results section. 

One of the main approaches to IGC using SMC was presented in 2010 by Harrell and Balakrishnan using 

terminal second-order sliding mode control [3]. by Harrell and Balakrishnan using terminal second-order 

sliding mode (TSM) control.  In 2019, Wang et al proposed an integrated guidance and control method with 

limited impact angle for the missile to achieve omnidirectional attack capability [4]. To improve the ability 

to damage the target, He et al. [5] designed an integrated guidance and control law with impact angle 

constraint to deal with the problem of tracking unknown maneuvering targets. To deal with the limitations 

of stimulus saturation in real systems, Ma et al in [6]  investigated an integrated control law using dynamic 

level control, feedforward control and adaptive neural network. And Michel and Stechel thoroughly 

investigated the sliding mode control for the integrated plane model [7]. In 2020, Tian et al. presented a 

unified model to avoid practical problems such as the field of view limitation, and solved the field limitation 

by converting output to input saturation [8]. In 2021, Sinha et al presented an integrated guidance and 

control model with limited time. In this research, due to the simplicity of the design, sliding mode control 

is used, while a non-linear finite time disturbance observer is used to estimate the target maneuver [9]. In 

2022, Lee proposed a unified model for hypersonic homing missiles. In this design, high-speed targets are 

hit with proper accuracy by using the sliding model controller, and by using the Monte Carlo method, the 

non-hit distance was reduced to the minimum [10]. In 2023 Xiaohui Liang et al investigated the nonlinear 

integrated missile guidance and control system with external uncertainties and disturbances and proposed 

a new adaptive neural network (NN) control scheme with the help of estimates obtained by NN and 

disturbance observer (DOB). In this paper, the weight learning rule NN and DOB are updated according to 

the tracking and estimation errors. Under the operation of the proposed adaptive NN rules, a good tracking 
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characteristic and guidance effects can be obtained for the integrated missile guidance and control (IGC) 

system. Finally, the simulation results of two different scenarios show the correctness of the designs. It is 

worth mentioning that the missile tracking process shows a smoother trajectory and a shorter distance can 

be achieved with the proposed NN adaptive control approach [11]. Xiangyu et al. 2024 investigates the 

integrated guidance and control (IGC) law design problem with impact angle and general field of view 

(FOV) constraints. First, the IGC model for non-maneuvering moving target tracking is parameterized by 

state-dependent coefficient matrices. The nominal IGC law for target interception with the desired impact 

angle is obtained by solving the state-dependent Riccati equation. Second, since the relative degrees of 

general FOV constraints exceed one according to the IGC model, high-order control barrier functions are 

constructed. Satisfying the FOV constraints is equivalent to ensuring that the hypersurface sets defined by 

the barrier functions are constant, which translate into dependent constraints on the control input. The 

nominal IGC law is modified in a minimally invasive way by quadratic programming. Then, the proposed 

method is extended to the case of maneuvering target tracking using a relative coordinate framework. 

Finally, numerical simulations are performed to confirm the effectiveness of the proposed method [12].  

Missile guidance and control have been widely studied using various control strategies, including classical 

proportional navigation, optimal control techniques, and nonlinear robust control approaches. While 

classical methods such as PID controllers offer simplicity and ease of implementation, they often fail to 

provide accurate interception in complex and dynamic engagement scenarios. Linear Quadratic Regulator 

(LQR) controllers offer an improvement by optimizing control inputs based on a quadratic cost function; 

however, their performance is heavily dependent on linearization, making them less effective in handling 

nonlinear missile dynamics and rapid target maneuvers. Recent advances in nonlinear control techniques, 

such as sliding mode control (SMC) and adaptive control, have addressed some of these limitations by 

enhancing robustness against uncertainties. However, these methods still face challenges in achieving an 

optimal trade-off between guidance accuracy, computational efficiency, and real-time adaptability. Model 

Predictive Control (MPC) has emerged as a powerful approach for handling complex dynamic systems by 

solving an optimization problem at each time step while considering system constraints. Despite its 

advantages, the application of MPC in real-time missile guidance remains an open challenge due to the 

computational burden and the need for fast optimization routines. This study aims to bridge these gaps by 

developing an online MPC-based integrated guidance and control (IGC) framework for missile-target 

engagements. Unlike conventional approaches that treat guidance and control separately, the proposed 

method integrates both processes into a unified framework, leveraging the predictive capability of MPC to 

dynamically adjust control inputs in real-time. The key contributions of this work include: 

1. Development of a real-time implementable online MPC framework for missile guidance and 

control. 

2. Comparison with conventional PID and LQR controllers to highlight improvements in miss 

distance, time to impact, and trajectory optimization. 

3. Comprehensive simulation results in a short-range air defense scenario, demonstrating the 

effectiveness of the proposed approach in minimizing interception time while maintaining 

optimal control effort.  

The remainder of this paper is organized as follows: Section 2 presents the mathematical modeling of the 

missile-target engagement. Section 3 details the proposed control strategies, including PID, LQR, and 

MPC-based IGC. Section 4 discusses simulation results and a comparative performance evaluation, 

followed by conclusions in Section 5. 
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2. Mathematical modeling 

 

A missile-target engagement scenario involves a missile trying to intercept a target by changing course. All 

through homing guidance, sensors onboard the missile are used to guide the missile to impact. The initial 

conditions of this scenario include three main assumptions. (a) Midcourse guidance is successful, (b) The 

speed of the missile and the target are close to each other in the collision course, (c) In order to intercept 

and completely destroy the target, the impact angle of the missile and the target is limited. The engagement 

geometry of this conflict scenario is shown in Fig. 1.  

 
Fig. 1 - Kinematics of conflict  

 

The general purpose of this article will be to design a proper controller for accurate target tracking. 

Therefore, the problem of missile-target engagement is discussed, which includes all the topics required for 

accurate modeling, including engagement kinematics, missile dynamics, and integrated guidance and 

control model. The o-xyz in Fig. 1 represents the inertial coordinate system. The coordinate system in which 

the missile and target velocities are described is shown in Fig. 1 as (𝑀 − 𝑥𝑀𝑦𝑀𝑧𝑀، 𝑇 − 𝑥𝑇𝑦𝑇𝑧𝑇) , and 𝑅 is 

the relative missile/target range. In respective orders, vectors 𝑉𝑀 and 𝑉𝑇 are the velocities of the missile 

and target, (𝜃𝑀 𝜑𝑀) and (𝜃𝑇 𝜑𝑇) are the angles of the missile and the target relative to the velocity 

coordinates and line of sight coordinate system, (𝜃𝐿𝜑𝐿) is the elevation angle and the side angle [13]. The 

kinematics of the engagement is described by the equations 

 
(1) 𝑅̈ − 𝑅𝜃̇𝐿

2 − 𝑅𝜙̇𝐿
2 𝑐𝑜𝑠2 𝜃̇𝐿 = 𝑎𝑡𝑅 − 𝑎𝑚𝑅 

(2) 𝑅𝜃̈𝐿 + 2𝑅̇𝜃̇𝐿 + 𝑅𝜙̇𝐿
2 𝑠𝑖𝑛 𝜃̇𝐿 𝑐𝑜𝑠 𝜃𝐿 = 𝑎𝑡𝜃 − 𝑎𝑚𝜃 

(3) −𝑅𝜙̈𝐿
2 𝑐𝑜𝑠 𝜃𝐿 − 2𝑅̇𝜙̇𝐿 𝑐𝑜𝑠 𝜃𝐿 + 2R𝜃̇𝐿𝜙̇𝐿 𝑠𝑖𝑛 𝜃𝐿 = 𝑎𝑡𝜙 − 𝑎𝑚𝜙 

 

In equations 1 to 3, (𝑎𝑚𝑅 , 𝑎𝑚𝜃 , 𝑎𝑚𝜙) and , (𝑎𝑡𝑅 , 𝑎𝑡𝜃 , 𝑎𝑡𝜙) represent the acceleration components for the 

missile and target, respectively. Also, θ is the angle of the flight path. Since the acceleration for the missile 

is usually provided by the aerodynamic force, in particular in the final phase of the guidance, closer attention 

must be given to the relationship between the acceleration of the missile and the aerodynamic force. The 

aerodynamic force on the missile is calculated in the inertial coordinate system as equations 4 to 7. 
(4) 

𝑎𝑚𝑧 =
𝑍

𝑚
 

(5) 
𝑎𝑚𝑦 =

𝑌

𝑚
 

(6) 𝑌 = 𝑞𝑆(𝑐𝑦
𝛼𝛼 + 𝑐𝑦

𝛽
𝛽 + 𝑐𝑦

𝛿𝑧𝛿𝑧) 

(7) 𝑍 = 𝑞𝑆 (𝑐𝑧
𝛼𝛼 + 𝑐𝑧

𝛽
𝛽 + 𝑐𝑧

𝛿𝑦𝛿𝑦) 
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In equations 4 to 7, (𝑎𝑚𝑧 , 𝑎𝑚𝑦) are the acceleration components of the missile along the inertial coordinate 

system, m indicates the mass of the missile, 𝜌 is the air density, (𝑌، 𝑍) indicate the upward and lateral forces, 

(𝑞 =
1

2
𝜌𝑉𝑚

2) is the dynamic pressure, 𝑆 represents the aerodynamic reference area of the missile, 𝛼 is the 

angle of attack , 𝛽 is the lateral slip angle, (𝛿𝑥𝛿𝑦𝛿𝑧) denotes the deflection angles of the missile  wings, 

(𝑐𝑧
𝛽
 𝑐𝑧
𝛼 𝑐𝑧

𝛿𝑦
) are partial derivatives of the lift force coefficient, and (𝑐𝑧

𝛽
 𝑐𝑧
𝛼 𝑐𝑧

𝛿𝑦
)  partial derivatives are the 

lateral force coefficients. 

By combining equations 2, 3, 6, and 7, the equations for the line of sight angle appear as equations 8 and 9, 

as follows. 

(8) 𝜃̈𝐿 = −𝜙̇𝐿
2
𝑠𝑖𝑛 𝜃𝐿 𝑐𝑜𝑠 𝜃𝐿 −

2𝑅̇𝜃𝐿̇
𝑅

−𝑀1𝑌 𝑐𝑜𝑠(𝛾𝑉) −
𝑠𝑖𝑛 𝜃𝐿 𝑠𝑖𝑛(𝜙𝐿 − 𝜑𝑉)

𝑚𝑅
(𝑌 𝑐𝑜𝑠(𝛾𝑉) + 𝑍 𝑠𝑖𝑛(𝛾𝑉))

+ 𝑀1(𝑚𝑔 𝑐𝑜𝑠 𝜃 + 𝑍 𝑠𝑖𝑛(𝛾𝑉)) + 𝑑𝜃𝐿  

(9) 
𝜙𝐿̈ = −

2𝑅̇𝜙𝐿̇
𝑅

+ 2𝜃𝐿̇𝜙𝐿̇ 𝑡𝑎𝑛 𝜃𝐿 −𝑀2𝑌 𝑐𝑜𝑠(𝛾𝑉) +
𝑐𝑜𝑠(𝜙𝐿 − 𝜑𝑉)

𝑚𝑅𝑐𝑜𝑠𝜃𝐿
(𝑌 𝑐𝑜𝑠(𝛾𝑉) + 𝑍 𝑠𝑖𝑛(𝛾𝑉))

+ 𝑀2(𝑚𝑔 𝑐𝑜𝑠 𝜃 + 𝑍 𝑠𝑖𝑛(𝛾𝑉)) + 𝑑𝜙𝐿    

 

In equations 8 and 9, parameters 𝑀1 and 𝑀2 are defined as relations 10 and 11. 

(10) 
𝑀1 =

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃𝐿 + 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃𝐿 𝑐𝑜𝑠(𝜙𝐿 −𝜑𝑉)

𝑚𝑅
 

(11) 
𝑀2 =

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(𝜙𝐿 − 𝜑𝑉)

𝑚𝑅 𝑐𝑜𝑠 𝜃𝐿
 

 

In equations 8 to 11, 𝜑𝑉 is the ballistic angle, 𝛾𝑉 the rotation angle, (𝑑𝜃𝐿 𝑑𝜙𝐿) are the approximate error for 

the 𝜃𝐿 and 𝜙𝐿. Kinematic equations of flight path angle and ballistic angle are shown as equations 12 and 

13, as follows.  

(12) 
𝜃̇ =

𝑌 𝑐𝑜𝑠 𝛾𝑉 − 𝑍 𝑠𝑖𝑛𝛾𝑉 −𝑚𝑔 𝑐𝑜𝑠𝜃 

𝑚𝑉𝑚
 

(13) 
𝜑𝑉̇ =

−𝑌 𝑠𝑖𝑛𝛾𝑉 − 𝑍 𝑐𝑜𝑠𝛾𝑉
𝑚𝑉𝑚 𝑐𝑜𝑠𝜃

 

 

The kinematic and dynamic equations of the missile rotating around the center of mass in three-dimensional 

space are given as equations 14 through 16 as follows. 

(14) 
𝛼̇ = −𝜔𝑥 𝑡𝑎𝑛 𝛽 𝑐𝑜𝑠 𝛼 + 𝜔𝑦  𝑡𝑎𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 𝜔𝑧 −

𝑌

𝑚𝑉𝑚 𝑐𝑜𝑠𝜃
+
𝑔 𝑐𝑜𝑠 𝜃  𝑐𝑜𝑠 𝛾𝑉
𝑉𝑚 𝑐𝑜𝑠𝜃

   

(15) 
𝛽̇ = 𝜔𝑥 𝑠𝑖𝑛 𝛼 + 𝜔𝑦 𝑐𝑜𝑠 𝛼 +

𝑍 +𝑚𝑔 𝑐𝑜𝑠𝜃  𝑠𝑖𝑛 𝛾𝑉
𝑚𝑉𝑚
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(16) 
𝛾𝑉̇ = 𝑐𝑜𝑠 𝛼 𝑠𝑒𝑐 𝛽 𝜔𝑥 − 𝑠𝑖𝑛 𝛼  𝑠𝑒𝑐 𝛽 𝜔𝑦 +

𝑌(𝑡𝑎𝑛𝜃  𝑠𝑖𝑛 𝛾𝑉 + 𝑡𝑎𝑛 𝛽) + 𝑍 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠 𝛾𝑉
𝑚𝑉𝑚

−
𝑐𝑜𝑠𝜃  𝑐𝑜𝑠 𝛾𝑉 𝑡𝑎𝑛 𝛽

𝑉𝑚
𝑔    

 

In equations 14 to 16, parameters 𝜔𝑥 , 𝜔𝑦 , and 𝜔𝑧  are the angular velocities in the roll, yaw, and pitch 

channels, respectively.  

The dynamic equations of the state of the missile are obtained as equation 17.  

(17) 

{
 
 
 

 
 
 𝜔𝑥̇ =

𝐽𝑦 − 𝐽𝑧

𝐽𝑥
 𝜔𝑧𝜔𝑦 +

𝑀𝑥
𝐽𝑥 

𝜔𝑦̇ =
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

 𝜔𝑥𝜔𝑧 +
𝑀𝑦

𝐽𝑦 

𝜔𝑧̇ =
𝐽𝑥 − 𝐽𝑦

𝐽𝑧
 𝜔𝑦𝜔𝑥 +

𝑀𝑧
𝐽𝑧

 

 

In equation 17, (𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧) denote the moments of inertia for the roll, yaw, and pitch channels, 

respectively. Also, the three moments  )𝑀𝑥  , , 𝑀𝑦 , 𝑀𝑧 ( are defined as in equation 18. 

 

(18) 

{
 
 

 
 𝑀𝑥 = 𝑞𝑆𝐿 (𝑚𝑥

𝛼 𝛼 + 𝑚𝑥
𝛽
 𝛽 + 𝑚𝑥

𝛿𝑥𝛿𝑥)

𝑀𝑦 = 𝑞𝑆𝐿 (𝑚𝑦
𝛽
 𝛽 + 𝑚𝑦

𝛿𝑦𝛿𝑦)               

𝑀𝑧 = 𝑞𝑆𝐿 (𝑚𝑧
𝛼  𝛼 + 𝑚𝑧

𝛿𝑧𝛿𝑧)                 

 

 

 

In equation 18, 𝐿 is the reference length, (𝑚𝑥
𝛼 ,𝑚𝑥

𝛽
 𝑚𝑥
𝛿𝑥) are the moment coefficient of the partial derivatives 

related to the roll channel, (𝑚𝑦
𝛽
,𝑚𝑦

𝛿𝑦
) are those related to the yaw channel, and (𝑚𝑧

𝛼  , 𝑚𝑧
𝛿𝑧) are those related 

to the pitch channel. 

By combining relations 8, 9, and 14 with 18, the three-dimensional equations of the integrated missile 

guidance and control can be written as equation 19 [13]. 

(19) 

{

𝑥̇0 = 𝑥1                       
𝑥̇1 = 𝑓1 + 𝑏1𝑥2̅̅ ̅ + 𝑑1
𝑥̇2 = 𝑓2 + 𝑏2𝑥3 + 𝑑2
𝑥̇3 = 𝑓3 + 𝑏3𝑢 + 𝑑3  

 

 

, where  

  𝑥0 = [
𝜃𝐿 − 𝜃𝐿𝑓
𝜙𝐿 − 𝜙𝐿𝑓

] ,    𝑥1 = [
𝜃̇𝐿
𝜙̇𝐿
]   ,   𝑥2̅̅ ̅ = [

𝛼
𝛽]   ,    𝑥2 = [

𝛼
𝛽
𝛾𝑣
] ،    𝑥3 = [

𝜔𝑥
𝜔𝑦
𝜔𝑧
]  ,    𝑢 = [

𝛿𝑥
𝛿𝑦
𝛿𝑧

]   
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and the 𝑑𝑖
′𝑠 , 𝑖 = 1,2,3 show the approximate system errors, which are deviations in elevation, lateral, and 

range dimensions, respective. Moreover, the matrices 𝑏𝑖 and 𝑓𝑖 are shown in relations (20) to (25).  

 

(20) 

𝑏1 =

[
 
 
 
 −𝑀1𝑞𝑆𝑐𝑦

𝛼 −
𝑞𝑆𝑐𝑧

𝛽
𝑠𝑖𝑛 𝜃𝐿 𝑠𝑖𝑛(𝜙𝐿 − 𝜙𝑉)

𝑚𝑅

−𝑀2𝑞𝑆𝑐𝑦
𝛼

𝑞𝑆𝑐𝑧
𝛽
𝑐𝑜𝑠(𝜙𝐿 − 𝜙𝑉)

𝑚𝑅 𝑐𝑜𝑠 𝜃𝐿 ]
 
 
 
 

 

(21) 𝑏2 = [
− 𝑡𝑎𝑛𝛽 𝑐𝑜𝑠 𝛼 𝑡𝑎𝑛 𝛽 𝑠𝑖𝑛 𝛼 1

𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0
𝑐𝑜𝑠 𝛼 𝑠𝑒𝑐 𝛽 − 𝑠𝑖𝑛𝛼 𝑠𝑒𝑐 𝛽 0

] 

 

(22) 

 

 

 

 

𝑏3 =

[
 
 
 
 
 
 
 𝑞𝑆𝐿𝑚𝑥

𝛿𝑥

𝐽𝑥
0 0

0
𝑞𝑆𝐿𝑚𝑦

𝛿𝑦

𝐽𝑦
0

0 0
𝑞𝑆𝐿𝑚𝑧

𝛿𝑧

𝐽𝑧 ]
 
 
 
 
 
 
 

 

 

(23) 
𝑓1 =

[
 
 
 −
2𝑅̇

𝑅
 𝜃̇𝐿 − 𝜑̇𝐿

2 𝑠𝑖𝑛 𝜃𝐿 𝑐𝑜𝑠 𝜃𝐿 +𝑀1𝑚𝑔 𝑐𝑜𝑠𝜃

−
2𝑅̇

𝑅
 𝜙̇𝐿 + 2𝜃̇𝐿𝜙̇𝐿 𝑡𝑎𝑛 𝜃𝐿 +𝑀2𝑚𝑔 𝑐𝑜𝑠𝜃 ]

 
 
 

 

 

(24) 

𝑓2 =

[
 
 
 
 
 −

𝑞𝑆𝑌𝑦

𝑚𝑉 𝑐𝑜𝑠 𝛽
+

𝑔

𝑉 𝑐𝑜𝑠 𝛽
𝑐𝑜𝑠 𝛾

−
𝑞𝑆𝑍𝑧
𝑚𝑉

+
𝑔

𝑉
 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛾

−
𝐹𝑌𝑍
𝑚𝑉

−
𝑔

𝑉
 𝑐𝑜𝑠 𝜃  𝑐𝑜𝑠 𝛾 𝑡𝑎𝑛 𝛽]

 
 
 
 
 

 

 

(25) 

𝑓3 =

[
 
 
 
 
 
 
 𝐽𝑦 − 𝐽𝑧

𝐽𝑥
 𝜔𝑧𝜔𝑦 +

𝑞𝑆𝐿 (𝑚𝑥
𝛼  𝛼 + 𝑚𝑥

𝛽
 𝛽)

𝐽𝑥

𝐽𝑧 − 𝐽𝑥
𝐽𝑦

 𝜔𝑥𝜔𝑧 +
𝑞𝑆𝐿𝑚𝑥

𝛽
 𝛽

𝐽𝑦
                    

𝐽𝑥 − 𝐽𝑦

𝐽𝑧
 𝜔𝑦𝜔𝑥 +

𝑞𝑆𝐿𝑚𝑧
𝛼  𝛼

𝐽𝑧
                    

]
 
 
 
 
 
 
 

 

 
 

3 -  Controller design 

The missile hits the target when R (the distance between the missile and the target) approaches 𝑅ℎ𝑖𝑡 (the 

minimum distance between the missile and the target). The goal of the controller design in this article is to 

the make the angles 𝜃𝐿 and 𝜙𝐿 converge to their reference values 𝜃𝐿𝑓 and 𝜙𝐿𝑓, respectively, in addition to 

making the distance between the missile and the target approach 𝑅ℎ𝑖𝑡. 
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Backstepping method is used to solve the problem. The control input (u) will be calculated using the Higher 

order continuous sliding mode control. In the backstepping approach, a virtual control signal, denoted as 

𝑥2𝑑, is first designed to regulate the system dynamics. This signal is the desired behavior of the state 

variable 𝑥2 and its design is such that the state variable 𝑥0 tends to zero. So, in fact, the desired behavior of 

𝑥2 is obtained in such a way that the first goal of the control problem is established. In the next step, we 

design the virtual control signal 𝑥3𝑑. This signal is the reference signal for the state variable 𝑥3, and it is 

designed in such a way that if 𝑥3 follows it, 𝑥2 also follows 𝑥2𝑑 and as a result 𝑥0 will tend to zero. In the 

last stage, the real control input u is designed in such a way as to make 𝑥3 converge to 𝑥3𝑑, and as a result, 

the control loop is completed. By doing this, the second goal of the control problem is to force the miss 

distance assume as small as possible. In effect, the problem here is that of a minimization type, aiming at 

reducing the distance R to its minimum value, 𝑅ℎ𝑖𝑡. This distance R is directly related to the errors 𝑑1, 𝑑2, 𝑑3 

defined in Eq. (19).   

Two virtual control signals are obtained by the backsteping method, but the real control signal, which is the 

main goal of this article, will be calculated from the Higher order continuous sliding mode control. To 

calculate virtual signals, we will have relations (26) and (27) [13]. 

 

(26) 𝑆1 = 𝑥0 + 𝑐𝑥1 

𝑥2𝑑 = −(𝑐𝑏1)
−1(𝑥1 + 𝑐𝑓1 + 𝐾1 tanh(𝑆1)) 

 

(27) 𝑆2 = 𝑥2 − 𝑥2𝑑 

𝑥3𝑑 = −(𝑏2)
−1(𝑓2 +𝐾2 tanh(𝑆2)) 

 

In equations (26) and (27), the coefficients c, 𝐾1 , and 𝐾2 are fixed and will be obtained with the help of 

optimization methods of PSO along with the variables related to the real controller. Also, the controller 

block diagram of the article is drawn in Fig. 2 

 

 
Fig. 2 - Controller block diagram 

 

3-1 PID controller design 

PID controller is introduced as a standard control structure in classical control theory. The performance of 

the system is improved by accurately adjusting the values of the three proportional gains 𝐾𝑝, integral gain 
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𝑇𝑖 , and derivative gain 𝑇𝑑. By adjusting these parameters, the steady state error and output fluctuations can 

be controlled in response to the step input. In order to evaluate the proposed controller of this article, first 

a simple PID controller is designed. According to the system equations, the output of the missile system is 

its angular velocities. These speeds are to tend to zero. As a result, tracking error is defined as equation 28. 

(28) 
𝑒 = 0 − [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]

𝑇
= −[𝜔𝑥, 𝜔𝑦, 𝜔𝑧]

𝑇
 

 

The general form of the PID controller is of the form given in Eq. (29) as:  

(29) 𝑢 = 𝐾𝑝𝑒 + 𝑇𝑖∫𝑒 𝑑𝑡 + 𝑇𝑑 (
𝑑𝑒

𝑑𝑡
) 

 

Ziegler Nichols method is used to obtain the  𝐾𝑝, 𝑇𝑖 , and 𝑇𝑑  gains in relation (29). For this purpose, the 

system should be linearized first. By a frequency analysis then, the PID controller gains are obtained from 

Eq. (30) [14]. 

 

 

(30) 

𝐾𝑝 = 0. 6 𝐾𝑐𝑟  

𝑇𝑑 = 0. 125 𝑃𝑐𝑟         

𝑇𝑖 = 0. 5 𝑃𝑐𝑟 

 

The values of 𝐾𝑐𝑟 and 𝑃𝑐𝑟 are calculated from Eq. (31). 

(31) 𝐾𝑐𝑟 = 𝐺𝑚        𝑃𝑐𝑟 =
2𝜋

𝑤𝑐𝑔
         

In relation (31), the parameter 𝐺𝑚 is the phase margin and 𝑤𝑐𝑔 is the frequency where the phase margin is 

measured and the system phase will be -180.  

 

3-2 LQR controller design 
 

The 2nd-order linear regulator or LQR controller attempts to minimize the objective function (32). 

(32) 
𝐽 = ∫

1

2
[𝑥𝑇𝑄(𝑡)𝑥(𝑡) + 𝑢𝑇𝑅(𝑡)𝑢(𝑡)]𝑑𝑡

𝑡𝑓

0

         

 

In Eq. (32), the parameter 𝑡𝑓 denotes the final time. Also, Q and R are two weight matrices that are obtained 

through optimization. The equation for the control input associated with this objective function is obtained 

as given in Eq. (33) [14].  

 

(33) 𝑢(𝑡) = −𝑅−1𝐵𝑇𝐾(𝑡)𝑥(𝑡) 
 

where B is the matrix multiplier for the control input in the linearized system, and  𝐾(𝑡)  is obtained from 

Eq. (34) below. 

 

(34) 0 = 𝐾̇(𝑡) + 𝑄 − 𝐾(𝑡)𝐵𝑅−1𝐵𝑇𝐾(𝑡) + 𝐾(𝑡)𝐴 + 𝐴𝑇𝐾(𝑡) 
 

, where 𝐴 is the matrix multiplier for the state vector in the linearized system. f 

3-3 Design of predictive model controller 
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In most control projects where the use of predictive model control is considered a necessity, the linear type 

predictive model controller option is preferred. In particular, in industrial projects, due to the need for high 

speed and reliability along with cost considerations, this type of controller has been almost the only option 

for designers [15]. In general, the pre-linear model controller can be implemented in two ways: online 

(implicit) and offline (explicit). In the implementation of the online type, the optimization problem of the 

control cost function is solved online in each time step, and the solution to this problem will determine the 

optimal control order. But in the offline method, the optimization problem is solved once for all possible 

values of the state vector and the optimal solution is calculated as an explicit function of the variables of 

the state vector and loaded into the controller memory. At each time step then, the controller will determine 

the value of this function based on the values of the state variables to issue the control commands. 

As such, the time required to perform control calculations is reduced, hence making it possible to implement 

the devised controller on the control hardware with limited processing volume.  

3-3-1 Designing an online predictive model controller 

 

We start the design of the predictive model controller by linearizing the open-loop equations of the system. 

Although it is possible to obtain linearized state equations by using Jacobians of the nonlinear equations, 

the method of trimming nonlinear equations is more appropriate for problems with high degree of 

nonlinearity due to the availability of the necessary tools in MATLAB and for better approximation. The 

difference in the results of these two different linearization methods will be seen in the comparison of the 

controller performance in the implied linear forecast model and the nonlinear forecast model based on the 

Matlab f-mincon solver. Assuming that the disturbances (target acceleration) are zero, the standard form of 

the linearized state equations of the open loop system is expressed as follows ]15[. 

(35) 𝑥̇(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) 

The output equation of the system is expressed as follows. 

(36) 𝑦(𝑡) = 𝐶𝑐𝑥(𝑡) 

The numerical values of the above matrices are available in the relevant MATLAB file, and their mention 

has been avoided in order to avoid confusion. 

The predictive model controller is usually implemented as discrete time in control systems. Therefore, we 

express the state equations in the form of discrete-time state space equations using the zeroth-order retainer 

and the sampling time 𝑇𝑠. Hence, the discrete-time equations appear as: 

(37)       1 d dx k A x k B u k    

(38)     dy k C x k  

 

Relations (37) and (38) express the model based on which the predictive model controller is developed. 

Therefore, this model is called control-oriented model. In order to consider the constraint related to the rate 

of acceleration changes in the control equations, and also due to the effect of integration on the controller 

to reduce the steady state error, the control input at the present time step will be a combination of the control 

input from the previous step and the increase in the input, i.e.,  𝑢(𝑘) = 𝑢(𝑘 − 1) + Δ𝑢(𝑘), and the control 

input  𝑢(𝑘 − 1) is augmented to the state vector as indicated in Eq. (39). 
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(39) 

     1a a a ax k A x k B u k  

 

 

 

 
 

1

10

d d d
x k x kA B B

u k
u k u kI I

       
       

      
 

This new control-oriented model is called the augmented model. The output equations of the augmented 

model can be expressed as follows. 

 

(40)    a ay k C x k    
 

 
0

1
d

x k
y k C

u k

 
  

 
 

 

By defining 𝑁𝑝 and 𝑁𝑐 as prediction and control horizons respectively, the input and output equations of 

the prediction model can be calculated using the following equation. 

 

(41) 𝑌 = 𝐹 [
𝑥(𝑘)

𝑢(𝑘 − 1)
] + 𝜙Δ𝑈 

 

In the equation of the above forecasting model, the Y vector can be taken to be of the form given in Eq. 

(42) as: 

(42) 𝑌 = [

𝑦(𝑘 + 1|𝑘)
𝑦(𝑘 + 2|𝑘)

⋮
𝑦(𝑘 + 𝑁𝑝|𝑘)

] 

 

the ΔU vector taken as shown in Eq. (43) 

 

(43) Δ𝑈 = [

Δ𝑢(𝑘|𝑘)
Δ𝑢(𝑘 + 1|𝑘)

⋮
Δ𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)

] = [

Δ𝑎ℎ(𝑘|𝑘)
Δ𝑎ℎ(𝑘 + 1|𝑘)

⋮
Δ𝑎ℎ(𝑘 + 𝑁𝑐 − 1|𝑘)

] 

 

and matrix A taken from Eq. (44) as: 

 

(44) 𝐹 =

[
 
 
 
𝐶𝑎𝐴𝑎
𝐶𝑎𝐴𝑎

2

⋮

𝐶𝑎𝐴𝑎
𝑁𝑝
]
 
 
 

 

 

and the matrix ϕ is obtained from Eq. (45) as:  

 

(45) 𝜙 =

[
 
 
 
𝐶𝑎𝐵𝑎 … 0
𝐶𝑎𝐴𝑎𝐵𝑎 … 0

⋮

𝐶𝑎𝐴𝑎
𝑁𝑝𝐵𝑎

⋱
…

⋮

𝐶𝑎𝐴𝑎
𝑁𝑝−𝑁𝑐𝐵𝑎]

 
 
 

 

 

3-3-2 Definition of the constrained optimization problem of predictive model control 
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The method of predictive model control strategy is based on the use of a function of inputs and outputs (or 

state variables) called the performance function, which should be optimized in the prediction horizon while 

satisfying the constraints of the problem. The state variables in the future time are calculated using the 

predictive model and the system conditions in the present time (𝑥𝑎(𝑘|𝑘) = 𝑥𝑎(𝑘)) as the initial conditions. 

By solving the stated optimization problem, the sequence of control inputs is obtained as Δ𝑈 =

[∆𝑎ℎ(𝑘|𝑘),… , ∆𝑎ℎ(𝑘 + 𝑁𝑐−1|𝑘)]
𝑇. Then, based on the descending horizon control rule, the first input of 

this sequence is applied to the control system and the same process is repeated again in the next time steps. 

The cost function in the predictive model control is usually chosen as a linear function or a quadratic 

function. Although solving the first-order equation requires less computational effort than solving the 

second-order equation, the existence of the overall minimum value is not guaranteed in this method. 

Therefore, the cost function is chosen in the form of a quadratic function, so that owing to the convexity of 

this function, the existence of a local minimum point is equivalent to the existence of a global minimum 

point (a necessary and sufficient condition for optimality). The cost function for the pursuit problem is 

defined as follows ]15[: 

(46) 

𝐽 =∑[𝑦(𝑘 + 𝑖|𝑘) − 𝑟(𝑘 + 𝑖|𝑘)]𝑇𝑄[𝑦(𝑘 + 𝑖|𝑘) − 𝑟(𝑘 + 𝑖|𝑘)]

𝑁𝑝

𝑖=1

+ ∑ Δ𝑢𝑇(𝑘 + 𝑗|𝑘)𝑅Δ𝑢(𝑘 + 𝑗|𝑘)

𝑁𝑐−1

𝑗=0

 

In the cost function of the investigated problem, Q is a positive definite symmetric matrix and R is a positive 

scalar. Also, 𝑟(𝑘 + 𝑖|𝑘) = [𝑥𝑟,𝑑(𝑘 + 𝑖|𝑘) 𝑣𝑟,𝑑(𝑘 + 𝑖|𝑘) 𝑣ℎ,𝑑(𝑘 + 𝑖|𝑘)]𝑇.  The reference vector is 

pertinent to the prediction window and expresses the controller's expectation of the behavior of the reference 

vector in future times. The values of elements of this vector in reference to the prediction window are 

considered constant and equal to the values of the reference signal at the sampling moment 𝑘. At times it is 

possible to predict the changes of the controller's reference signals in advance, which is called "foreseeing" 

the reference signal in the control of the predictive model. Anticipating the reference signal actually means 

a more accurate definition of control expectations in the future, and it significantly improves system 

performance, especially in plants with fast dynamics.  
 

The matrix form of the cost function can be expressed as follows ]15[. 

 

(47) 

𝐽 =

[
 
 
 
𝑦(𝑘 + 1|𝑘) − 𝑟(𝑘 + 1|𝑘)
𝑦(𝑘 + 2|𝑘) − 𝑟(𝑘 + 2|𝑘)

⋮
𝑦(𝑘 + 𝑁𝑝|𝑘) − 𝑟(𝑘 + 𝑁𝑝|𝑘)]

 
 
 
𝑇

⏟                    
𝑌𝑇−𝑅𝑒𝑓𝑇

[
𝑄 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑄

]
⏟        

𝑄̂
[
 
 
 
𝑦(𝑘 + 1|𝑘) − 𝑟(𝑘 + 1)
𝑦(𝑘 + 2|𝑘) − 𝑟(𝑘 + 2)

⋮
𝑦(𝑘 + 𝑁𝑝|𝑘) − 𝑟(𝑘 + 𝑁𝑝)]

 
 
 

⏟                  
𝑌−𝑅𝑒𝑓

+ [

Δ𝑢(𝑘|𝑘)
Δ𝑢(𝑘 + 1|𝑘)

⋮
Δ𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)

]

𝑇

⏟              
Δ𝑈𝑇

[
𝑅 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅

]
⏟        

𝑅̂

[

Δ𝑢(𝑘|𝑘)
Δ𝑢(𝑘 + 1|𝑘)

⋮
Δ𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)

]

⏟            
Δ𝑈

= (𝑌 − 𝑅𝑒𝑓)𝑇𝑄̂(𝑌 − 𝑅𝑒𝑓) + Δ𝑈𝑇𝑅̂Δ𝑈 
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 

 

   

 

   ˆ
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

   
   

         
    

      
    
     

   
           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 𝑄̂and 𝑅̂ are positive definite matrices. Substitution of Eq. (41) in Eq. (47) results in:  

 

(48) 

𝐽 =
1

2
Δ𝑈𝑇 2[𝑅̂ + 𝜙𝑇𝑄̂𝜙]⏟        

𝐻̂

Δ𝑈 + 2([
𝑥(𝑘)

𝑢(𝑘 − 1)
]
𝑇

𝐹𝑇 − 𝑅𝑒𝑓𝑇) 𝑄̂𝜙
⏟                    

𝑀̂

Δ𝑈

+ 𝑅𝑒𝑓𝑇𝑄̂𝑅𝑒𝑓 + [
𝑥(𝑘)

𝑢(𝑘 − 1)
]
𝑇

𝐹𝑇𝑄̂ (𝐹 [
𝑥(𝑘)

𝑢(𝑘 − 1)
] − 2𝑅𝑒𝑓)

⏟                                    
𝑁̂

=
1

2
Δ𝑈𝑇𝐻̂Δ𝑈 + 𝑀̂Δ𝑈 + 𝑁̂ 

 

The expression  𝐻̂ = 2[𝑅̂ + 𝜙𝑇𝑄̂𝜙] ∈ ℝ𝑁𝑐×𝑁𝑐 in the above equation is a symmetric positive definite matrix 

and the column vector  𝑀̂ = 2([𝑥𝑇(𝑘) 𝑢𝑇(𝑘 − 1)]𝐹𝑇 − 𝑅𝑒𝑓𝑇)𝑄̂𝜙 ∈ ℝ𝑁𝑐  , and the scaler 

  𝑁 = 𝑅𝑒𝑓𝑇𝑄̂𝑅𝑒𝑓 + [𝑥𝑇(𝑘) 𝑢𝑇(𝑘 − 1)]𝐹𝑇𝑄̂(𝐹[𝑥𝑇(𝑘) 𝑢𝑇(𝑘 − 1)]𝑇 − 2𝑅𝑒𝑓) ∈ ℝ  varies with time. 

To implement the problem constraints, the control input vector is rewritten in the form: 

 

(49) 
[

𝑢(𝑘|𝑘)
𝑢(𝑘 + 1|𝑘)

⋮
𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)

]

⏟            
𝑈

= [

1
1
⋮
1

]

⏟
𝐺1,𝛥𝑈

𝑢(𝑘 − 1) + [
1 0 … 0
⋮ ⋱ ⋮
1 … 1

]
⏟        

𝐺2,𝛥𝑈

[

𝛥𝑢(𝑘|𝑘)
𝛥𝑢(𝑘 + 1|𝑘)

⋮
𝛥𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)

]

⏟            
𝛥𝑈

= 𝐺1,𝛥𝑈𝑢(𝑘 − 1) + 𝐺2,𝛥𝑈𝛥𝑈 
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With the help of Eq. (49), the problem constrains for the duration of the prediction window can be obtained 

as described below. 

 (50) 

𝑈𝑚𝑖𝑛 ≤ 𝐺1,Δ𝑈𝑢(𝑘 − 1) + 𝐺2,Δ𝑈Δ𝑈 ≤ 𝑈
𝑚𝑎𝑥 

{
−𝐺2,Δ𝑈Δ𝑈 ≤ 𝐺1,Δ𝑈𝑢(𝑘 − 1) − 𝑈

𝑚𝑖𝑛

𝐺2,Δ𝑈Δ𝑈 ≤ −𝐺1,Δ𝑈𝑢(𝑘 − 1) + 𝑈
𝑚𝑎𝑥 

The constraints on the changes in the control input vector is given as: 

(51) 

Δ𝑈𝑚𝑖𝑛 = [1 ⋯ 1]𝑇𝑗ℎ,𝑚𝑖𝑛 

Δ𝑈𝑚𝑎𝑥 = [1 ⋯ 1]𝑇𝑗ℎ,𝑚𝑎𝑥 

Δ𝑈𝑚𝑖𝑛 ≤ Δ𝑈 ≤ Δ𝑈𝑚𝑎𝑥 

{−Δ𝑈 ≤ −Δ𝑈
𝑚𝑖𝑛

Δ𝑈 ≤ Δ𝑈𝑚𝑎𝑥
 

and the constraints on the output vector are stated as: 

 

(52) 

Y𝑚𝑖𝑛 = [
1 1 1
⋮ ⋮ ⋮
1 1 1

] [

𝑥𝑟,𝑚𝑖𝑛
𝑣𝑟,𝑚𝑖𝑛
𝑣ℎ,𝑚𝑖𝑛

] 

Y𝑚𝑎𝑥 = [
1 1 1
⋮ ⋮ ⋮
1 1 1

] [

𝑥𝑟,𝑚𝑎𝑥
𝑣𝑟,𝑚𝑎𝑥
𝑣ℎ,𝑚𝑎𝑥

] 

{

−𝜙Δ𝑈 ≤ 𝐹 [
𝑥(𝑘)

𝑢(𝑘 − 1)
] − Y𝑚𝑖𝑛

𝜙Δ𝑈 ≤ −𝐹 [
𝑥(𝑘)

𝑢(𝑘 − 1)
] + Y𝑚𝑎𝑥

 

 

It should be noted that the increase in value of the input signal after the control horizon is considered zero 

and hence, the control input value remains constant. In summary, the system constraints based on the 

changes in the control input for the duration of the prediction window can be expressed as follows. 

 

(53) [

𝐺𝑈
𝐺Δ𝑈
𝐺𝑌

] Δ𝑈 ≤ [

𝑊𝑈
𝑊Δ𝑈
𝑊𝑌

] 

 

In the above inequality, the values are expressed as matrix blocks. Each of the blocks can be calculated 

according to the following relations. 

 

(54) 

 
2,Δ

2,Δ

 
U

U

U

G
G

G

 
  
 

 

 

 

ΔU

I
G

I

 
  
 
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YG




 
  
 

 

 

 

 
 

 
1,Δ

1,Δ

1

1

min

U

U max

U

G u k U
W

G u k U

  
  

   
 

 

Δ

Δ

Δ

min

U max

U
W

U

 
  
 

 

 

 

 

 

 

Y
1

Y
1

min

Y

max

x k
F

u k
W

x k
F

u k

  
  

  
  

       

 

 

By defining  𝐺 = [𝐺𝑈
𝑇 𝐺Δ𝑈

𝑇 𝐺𝑌
𝑇]𝑇 and  𝑊 = [𝑊𝑈

𝑇 𝑊Δ𝑈
𝑇 𝑊𝑌

𝑇]𝑇, the optimization problem of the online 

predictive model control for adaptive speed control system is finally expressed as shown in Eq. (55) below. 

 

(55) 

 
Δ

ˆ1
m ˆin Δ ˆΔ Δ

2

T

U
J U H U M U N

 
   

 
 

 
. .   Δs t G U W  

 

3-3-3 Solving the constrained optimization problem 
 

Due to the fact that the cost function in problem (55) is quadratic convex and the constraints of the problem 

are all affine, the optimization problem is quadratic programming. Considering that the term N ̂ has no role 

in the calculation of the gradient of the cost function, we can ignore this term in further calculations. The 

Lagrangian of the cost function and the constraints of the optimization problem are defined as follows ]15[. 

(56)     ˆ1
Δ , Δ Δ Δ Δ

2
ˆT TU U H U M U G U W      

 

In the above relation, λ is the vector of Lagrangian coefficients. The dual of the original quadratic 

programming problem is defined as follows. 

(57)       
Δ Δ

1
min Δ , ˆλ min Δ Δ Δˆ Δ

2

T T

U U
d U U H U M U G U W 

 
     

 
 

 

Therefore, the dual problem is expressed as follows. 

(58)      
Δ

0 0

ˆ1
max max min Δ Δ Δ

2
ˆ Δ

i i

T T

U
d U H U M U G U W

 

 

 

 

  
     

  
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For any arbitrary λ, the above Lagrangian function is convex. Therefore, the necessary and sufficient 

condition for optimality is that the value of the gradient of the Lagrangian function at the minimum point 

is zero. 

(59)   Δ ΔU,λ ΔU 0ˆ ˆT T T

U H M G       

 

Considering that 𝐻̂ = 𝐻̂𝑇 ≻ 0, the matrix  𝐻̂ = 𝐻̂𝑇 ≻ 0  is invertible. Therefore, we can write: 

(60)   1Δ ˆU ˆ T TH M G     

By placing this value in the dual problem, we have: 

(61)        1 1 1

0 0

1 1
m ˆax ˆm ˆax ˆ

2
ˆ

2
ˆ

i i

T T T T Td GH G W GH M MH M
 

 

     

 

 
     

 
 

 

To calculate the vector of optimal Lagrange coefficients, we calculate the gradient of the above relationship 

and obtain its roots. 

(62)    1 1 0ˆ ˆT Td GH G GH M W        

 

If we don't have any redundant constraints in the main problem, the matrix G will be of full order row, and 

considering that the matrix 𝐻̂ is of full order, we can calculate the vector of optimal Lagrange coefficients 

as follows. 

(63)     
1

* 1 1λ ˆ ˆT T

left
GH G GH M W


     

By inserting the value of λ^* in (61), the vector of the string of optimal control changes during the control 

window is obtained as: 

(64)     
1

* 1 1 1ˆ ˆ ˆΔ ˆU T T T T

left
H M G GH G GH M W


      
  

 

 

It should be noted that in the definition of the matrix M, the information of the generalized state vector 

𝑥𝑎(𝑡) and the reference signal vector are included. The W matrix also depends on the generalized state 

vector. The values of these matrices are changed in each time step according to the changes of state vectors 

and reference signals, and create a new vector of optimal changes of control commands during the control 

horizon. In this formulation, it is assumed that the control commands will remain unchanged in the interval 

between the control horizon and the prediction horizon, and therefore the value of the control input is 

considered constant in this time interval. 

In the descent horizon control strategy, the controller only applies the first array of the optimal control 

command vector in the control horizon to the system at each sampling time. Therefore, the control input 

for sampling time k will be equal to: 

(65)           * * *

  | 1 1 0 0 1u k u k k u k U u k         

3-3-3-1 KKT conditions for optimality 
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Considering that the optimization problem is of the second-order programming type, the first-order KKT 

conditions determine the necessary and sufficient conditions for the existence of the overall optimal 

solution. These conditions are used to solve the problem numerically. 

Necessary condition for optimality: 

(66)   * * * *Δ , ΔU 0ˆ ˆT T TU H M G       

Complementary redundant condition: 

((67   Δ 0i i iG U W    

Feasibility condition of the dual problem: 

(68)  0i   

Feasibility condition of the primal problem: 

(69)  Δ 0G U W   

3-3-3-2 Numerical solution of the problem of quadratic programming of linear predictive model control 

 

Algorithms for solving optimal problems of the quadratic programming type usually calculate the optimal 

point of the objective function by checking the optimality conditions of KKT and minimizing the difference 

between the value of the initial problem and the dual problem through repetition. In this section, the method 

of this calculation is briefly explained. 

Obviously, each vector Δ𝑈̅ in the set of possible solutions is an upper bound for the optimal value of the 

cost function J(ΔU) and this implies J(Δ𝑈̅) ≥ J∗ = 𝐽(Δ𝑈∗) . Now, we have to find a lower bound for this 

problem. Considering that the Lagrangian of the primal problem assumes that all Lagrangian coefficients 

are non-negative and the constraints of the problem are expressed in the form of an inequality, the inequality  

𝜆𝑇(𝐺Δ𝑈 −𝑊) ≤ 0 is always maintained and therefore we have: 

(70)   Δ ,λ J(ΔU)U   

By minimizing the sides, we will have this inequality: 

 

(71) 

    
ΔU ΔU

min Δ ,λ min J ΔUU   

 

                                . .     Δ 0s t G U W   

The above relation gives min
ΔU

ℒ(Δ𝑈, λ) as a lower bound for the primal problem. The best lower bound is 

obtained by maximizing the profit function min
ΔU

ℒ(Δ𝑈, λ) through the variables of the dual problem. 

 

(72) 

     
ΔU ΔU

0

max min Δ ,λ min J ΔU

i

U


 

  

 

. .     Δ 0s t G U W   

 

By defining the new cost function as  d(λ) = min
ΔU

ℒ(Δ𝑈, λ) , the dual problem is defined as follows. 
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(73) 
  

0

max  

i

d








 

The latter problem is unconstrained and its optimal point is 𝜆∗. Solving the dual problem always provides 

the largest lower bound of the primal problem, which is called the weak duality property. Let 𝑓∗and 𝑑∗ be 

the optimal values of primal and dual problem, respectively. As stated, it is always noted that  𝑑∗ ≤ 𝑓∗  , 

and hence we call  𝜀 = 𝑑∗ − 𝑓∗  as the Duality gap. If the Duality gap is equal to zero, it is said that there 

is a Strong duality. 

Each possible solution, such as Δ𝑈̃ within the set of possible solutions, provides new information about the 

upper bound of the primal problem, and more precisely, 𝑓∗ ≤ 𝑓(Δ𝑈̃). If we can find a feasible solution 

such as 𝜆̃ for the dual problem  𝑑(𝜆̃) ≤ 𝐽∗, we will be able to form an interval for the location of the optimal 

value of the primal problem where the inequalities  𝑑(𝜆̃) ≤ 𝐽∗ ≤ 𝐽(Δ𝑈̃)  hold. Therefore, without knowing 

the exact value of 𝐽∗ and only knowing the value of the duality gap, it is possible to see how far the point 

obtained is suboptimal. 

Algorithms normally solve the primal and dual problems in an iterative manner and form a string of possible 

solutions such as {Δ𝑈̃𝑘 , 𝜆̃𝑘}𝑘=0,1,…for the primal and dual problems to the point where the stopping condition 

𝜀 < 𝜀𝑑𝑒𝑠𝑖𝑟𝑒𝑑  is established. In quadratic convex programming problems, the feasibility of the solution 

indicates a strong duality. This means that the desired duality gap can be chosen arbitrarily small. 

3-3-4 Softening constraints 

 

All the constraints that have been defined in the problem so far are hard constraints, which means that the 

controller should not violate them under any circumstances. Hard constraints that are defined on state 

variables or system output sometimes cause the problem of infeasibility of the solution. For example, 

unmodeled perturbations may drive outputs outside the range of feasible solutions. Therefore, there will be 

no defined control command to bring the outputs back within the allowed range at the next time step. For 

this reason, the constraints imposed on the output (and state variables) are usually relaxed. By defining the 

variable ε and the vector M, the constraints of the output vector can be softened as follows. 

(74) 
  

min maxy M y y M      

In the recent relation, 𝑀𝑖 ≥ 0  is the value related to the degree of softening of the 𝑖𝑡ℎ adverb of the output. 

Also, in order to reduce the amount of deviation of the outputs from their allowed values, the term 𝜌𝜀2 is 

added to the objective function to penalize the violation of the output constraints (𝜌 is an arbitrary large 

enough positive number). Therefore, 𝜀  will play the role of a new independent variable in the optimization 

problem [16]. 

This method can be used to soften control input constraints or control input changes. In the problems of 

tracking the reference vector by the controller with the property of integration, it is usually recommended 

that the output constraints are selected as soft as possible and the control input constraints or control input 

changes are also softened. 
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3-3-5  Setting the controller parameters of the forecast model 

 

One of the characteristics of the predictive model controller compared to other control approaches is the 

multiplicity of adjustable parameters in this type of controller. Although this feature gives the designer more 

freedom to better adjust the behavior of the controller, sometimes it becomes a big challenge for him to 

properly set the controller parameters. Because at the time of adjusting the controller parameters, the 

compromise between the conflicting goals of stability, agility, tracking accuracy, and controller speed is 

inevitable, taking into account the limitation of computing volume and controller memory. It is important 

to emphasize that the optimality of the control command provided by the predictive model controller is 

completely dependent on the control parameters setting, and if these parameters are not set properly, the 

controller will not provide optimal performance. 

During many years of development and application of the predictive model controller in industrial 

applications, general rules have been developed to set the parameters of this type of controller. For example, 

in the articles related to the adjustment of the controlling parameters of the predictive model, it is 

recommended that the prediction horizon be chosen to be large enough to include the effective part of the 

process dynamics. Specifically, for a stable open-loop system, it has been said that 80-90% of the request 

time of the system's open-loop response to the step input can be a reasonable value for the length of the 

prediction window. Regarding the control horizon, 10-20% of the length of the prediction window is 

recommended in, but choosing a control horizon between 3 and 5 is an empirical rule recommended in the 

control literature [17]. 

In the predictive control implementation, the following parameters were used: 

Prediction Horizon (P): 10 steps, capturing the relevant system dynamics for the engagement scenario. 

Control Horizon (C): 3 steps, ensuring computational efficiency while maintaining control accuracy. 

Runtime: The MATLAB implementation required approximately 0.2 seconds per control cycle. 

These parameters were selected to optimize the trade-off between computational demands and control 

performance. 

3-3-6  Implementation of the algorithm of the online forecasting model 
 

In this paper, the predictive control toolbox of MATLAB has been used to implement the online predictive 

model controller. This toolbox, while providing the facilities needed to design the implicit predictive model 

controller with reference signal prediction capability, eliminates the need to build a predictive model from 

the control-oriented model. For this purpose, it is sufficient to create an object of the predictive control class 

using the open loop dynamic model of the system and change the methods and features presented in this 

class based on the needs of the problem. 

3-3-8  Controller stability analysis and solution feasibility condition 
 

In general, the stability of the predictive model controller is not guaranteed in advance. Furthermore, the 

controller may direct the state variables to a part of the state space where no optimal response satisfying the 

constraints of the problem can be computed in finite time. Therefore, the controller of the predictive model 

can be implemented when the stability and the condition of the existence of the solution in the entire 

problem space are examined. 
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The stability of the predictive model controller feedback loop has been investigated by several researchers. 

Most of the approaches to prove the stability of the predictive model control are essentially dependent on 

the arguments of Kirtshi and Gilbert, which show that under some conditions, the optimal objective function 

is actually a Lyapunov function. In these types of controllers, stability is generally a complex function of 

various adjustable parameters such as 𝑁𝑝 ،𝑁𝑐 ،𝑃 ، , and 𝑅. If a short control horizon is selected, the controller 

can easily become unstable. To avoid this situation, the prediction horizon can be considered very large 

(and ideally infinite). It is clear that such a choice will lead to growing increase in the processing volume 

of the controller. 

Another way to ensure the stability of the controller for an arbitrary prediction horizon is to apply the 

Terminal constraint on the last state vector in the prediction horizon . In this way, we will ensure that the 

state vector will converge to a certain vector at the end of the prediction horizon. The drawback of the 

mentioned method is that the equality condition of the Terminal constraint may cause inefficiency of the 

controller operation [18]. In addition, in order for such an approach to be possible, the open loop system 

must be achievable in addition to sustainability [19]. As it was shown earlier, the system studied in this 

research is not fully controllable and therefore all the state space vectors are not accessible in this problem 

and this method cannot be used to ensure the stability of the controller. 

However, it has been shown that the stability of the controller with a limited prediction horizon is also 

possible in the absence of stability guarantees. Specifically, it is proved in that a closed-loop control system 

with predictive model controller is asymptotically globally stable if and only if the associated optimization 

problem is feasible. Therefore, by showing that the constrained optimization problem is possible in any 

situation, we can implicitly prove the stability of the controller. 

4- Simulations and results 
 

After completing the design of the controllers used, the performance of the designed controllers is 

investigated in this section. The parameters of the missile and the values of the initial parameters of the 

missile and target engagement, and the initial conditions in all these simulations are the same and according 

to Table 1. 
 
 
 

Table 1 - Parameters of the homing missile [13] 

variable value Variable value 

𝑆 0. 42 𝑚2 𝐽𝑥 100 kg. 𝑚2 

𝐿 0. 68 m 𝐽𝑦 5700 kg. 𝑚2 

𝑚 1200 kg 𝐽𝑧 5600 kg. 𝑚2 

𝜌 1. 1558 kg/𝑚3 𝑚𝑦
𝛽

 -27. 31 

𝑚𝑧
𝛼 -28. 16 𝑚𝑦

𝛿𝑦
 -26. 57 

𝑚𝑧
𝛿𝑧 -27. 92 𝑚𝑥

𝛼 0. 46 

𝑐𝑦
𝛼 57. 16 𝑚𝑥

𝛽
 -0. 37 

𝑐𝑦
𝛽

 0. 08 𝑚𝑥
𝛿𝑥 2. 12 

𝑐𝑦
𝛿𝑧 5. 74 𝑐𝑧

𝛼 -56. 31 

𝑐𝑧
𝛽

 -5. 62 𝑐𝑧
𝛿𝑦

 0. 09 
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Table 2 - Initial parameters of missile and target engagement [13] 

variable value Variable value 

𝜃(0) 45 (deg) 𝑉𝑚 600 m/s 

Φ𝑐(0) 0 rad 𝑉𝑡 600 m/s 

𝜔𝑥  0. 1 rad/s 𝑥𝑡(0) 1136 m 

𝜔𝑦 0. 1 rad/s 𝑦𝑡(0) 8603 m 

𝜔𝑧 0. 2 rad/s 𝑧𝑡(0) 5192. 8 m 

𝑥𝑚(0) 0 m 𝜃𝐿𝑓 30 (deg) 

𝑦𝑚(0) 0 m 𝜙𝐿𝑓 -30 (deg) 

𝑧𝑚(0) 0 m 𝑎𝑇 19. 6*cos(t) 

   

4-1 Linear equations of missile motion and interception in three-dimensional space 
 

 

For a nonlinear system, consider the general equation (75): 

(75) 

 

  ,x f x u  

To obtain the linear system 𝑥̇ = 𝐴𝑥 + 𝐵𝑢  corresponding to the nonlinear system (75), we use relations 

(76): 

(76) 

 
 

0 0

,
  ,    

f x u
A x x u u

x


  


 

 

 

 
 

0 0

,
  ,    

f x u
B x x u u

u


  


 

 

In relation (76), 𝑥0 and 𝑢0 are the operating points of linearization. According to this relationship, to find 

the two matrices 𝐴 and 𝐵, we must find the partial derivatives of  𝑓  with respect to 𝑥 and 𝑢 at the operating 

point (i.e., the Jacobian matrix), respectively. 

We  now define a new linear system as Eq.  (77): 

(77)  x Ax Bu   

In Eq.  (77), the state and control vectors are defined as  𝑥 = [𝑥0
𝑇 , 𝑥1

𝑇 , 𝑥2
𝑇 , 𝑥3

𝑇 , 𝜃, 𝜙𝑣 , 𝑅, 𝑅̇]
𝑇
and 𝑢 =

[𝛿𝑥 , 𝛿𝑦 , 𝛿𝑧]
𝑇
, respectively. In fact, we define a linear system in such a way that it includes all the state 

variables defined in the previous sections. According to the above equations, we will have the numerical 

values given in Table 2, and finally using the equation (76), The following matrices are obtained for 𝐴 and 

𝐵. 
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𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0

−6. 67 7. 23 0 0 −6. 70 −204. 6 0 0 0 0 −5. 22 −1. 04 −8. 09 0
2. 41 2. 41 0 0 −3. 46 0. 682 0 0 0 0 4. 8 −2. 41 −4. 17 0
0 0 0 0 −0. 0116 0. 0003 −0. 0003 −0. 0175 0. 0003 1 0 0 0 0
0 0 0 0 0. 0114 0. 0011 0. 0142 0. 0175 1 0 −0. 0001 0 0 0
0 0 0 0 0. 0063 −0. 0137 0 1 −0. 0175 0 0. 0004 0 0 0
0 0 0 0 0. 45 −0. 36 0 0 0 0 0 0 0 0
0 0 0 0 0 −0. 47 0 0 0 0 0 0 0 0
0 0 0 0 −0. 49 0 0 0 0 0 0 0 0 0
0 0 0 0 0. 0118 0 0. 0002 0 0 0 0. 0082 0 0 0
0 0 0 0 0. 0112 0. 0013 −0. 0002 0 0 0 0. 0001 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 −0. 1672 −0. 0609 0 0 0 0 0 0 0 0]
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In obtaining the numerical values of these matrices, the operating points are considered as follows (actually, 

all operating points should have been considered zero, but since the denominator of some ratios became 

zero and undefined, small near values are considered for some operating points instead).  

𝑥0
0 = [0,0]𝑇 ,  𝑥1

0 = [0,0]𝑇 ,  𝑥2
0 = [

𝜋

180
,
𝜋

180
,
𝜋

180
]
𝑇

,  𝑥3
0 = [0,0,0]𝑇 ,  𝜃0 =

𝜋

6
 ,  𝜙𝑣

0 = 0 ,  𝑅0 = 1 , 𝑑𝑅0 = 0 

4-2  PID controller simulation performance  

 

In this section, the performance of the PID controller, whose parameters are adjusted by the Ziegler-Nichols 

method according to Table 3, is examined. 
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Table 3 – Parameters of the PID controller  

 

 

 

 

 
 
 
 
 
 

The simulation results for PID controller performance are shown in Fig. 3 to 6. 
 

 
 

Fig. 3- The missile-target relative distance using the PID controller 

 
Fig. 4 - Changes of elevation and side angles with time using the PID controller 

 
 
 
 

gain amount gain type 

0. 732 𝑲𝒑 

0. 417 𝑲𝒊 

1. 669 𝑲𝒅 
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Fig. 5 - Missile control input with the PID controller 

 

Fig. 6  – Missile-target trajectories using the PID controller 
 

The graphs in Fig. 3 and 4 show that in about 50 seconds, the relative distance between the missile and the 

target reaches zero. Also, the altitude and side angles reach their target values at the beginning of the flight. 

The control input in the diagram of Fig. 5 forced the missile to move towards the target according to the 

trajectories shown in Fig. 6 and hit the target at a height of 310 meters. In general, it can be said that the 

performance of the PID controller is poorly evaluated, since the flight time in this controller is rather too 

long for a short-range scenario, and the collision between the missile and the target occurred at a too low 

altitude, intuitively not considered an appropriate height for collision in air defenses. In addition, in the PID 

controller, the angles reach their reference values at the beginning of the missile's flight and do not converge 

during the flight, and this makes the target recognize the missile's path, hence lures the target to try to evade. 

The PID controller coefficients are obtained using Ziegler-Nicols method. The output of this method is 

normally fine and usually works better than that from optimization methods. Use of optimization tools in 

adjusting the PID controller gains are time-consuming and the desired result may not be quite reasonable 

due to spending too long a time. Moreover, the linearization required for the PID controller will make PID 

responsive only in limited operating points. According to the dynamics of the missile, linearization is not 

guaranteed for all modes, and even if the PID controller gains were designed using the neural and fuzzy 

network method, because the linearization was done, it is not valid in all domains. In addition, by changing 

the coefficients of the PID controller, its results are not improved in comparison with those from other 

controllers. Even if it is possible to achieve such a state, its control effort will be greatly increased and the 

system will be in a saturated state. As a result, PID is not considered as an appropriate controller for this 

system. In addition, the missile-target collision time with the PID controller is so high that PID is not a 
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proper controller for the missile to hit the target in a reasonable time span. In air defense systems, 

particularly in short range scenarios, time plays a very key role, even if some control effort is increased. In 

the end, it can be said that although the PID controller is simpler from an implementation perspective, it 

does not respond properly to complex systems. As a result, a controller that is suitable for complex nonlinear 

systems will be more reliable. 

4-3 Simulation of LQR controller performance 

 

In order to simulate the LQR controller, first, the appropriate values for the Q and R matrices for target-

missile engagement in this research were extracted and determined using the particle swarm optimization 

algorithm. The results of this optimization process for these two diagonal matrices are obtained as follows. 

𝑄 = 𝑑𝑖𝑎𝑔[0. 0988,5. 8532,0. 0893,4. 8708,9. 3566,0. 8765,1. 2646,3. 1068,9. 8594,4. 4510,9. 8985,3. 0687,0. 1200,0. 0380] 

𝑅 = 𝑑𝑖𝑎𝑔[9. 1104,1. 7283,1. 3463] 

Using these two matrices in the cost function of relation (32), the changes in the values of the cost function 

were obtained and depicted in Fig 7. It is observed that the time to reach the end of the simulation is 1154 

seconds for the PSO algorithm. 

 
Fig. 7 - Changes in the cost function in optimization with time using the LQR controller and genetic algorithm 

 

In the following, using the linearized state matrices and Riccati equation, the control input and gain matrix 

are calculated and the results from the simulation can be seen in Fig. 8 to 11. 

 
Fig. 8 - The missile-target relative distance using the LQR controller  
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Fig. 9 - Changes of elevation and side angles with time using the LQR controller 

 
Fig. 10 Missile control input with the LQR controller 

 
Fig. 11 – Missile-target trajectories using the LQR controller 

 

The graphs in Fig. 8 show that in about 32.3 seconds the relative distance between the missile and the target 

reaches zero, resulting in collision. Also, the altitude and side angles reach their target values at the 

beginning of the flight, as shown in Fig. 9. The control input in the diagram of Fig. 10 forced the missile to 

move towards the target according to the trajectory drawn in Fig. 11, and hit the target at an altitude of 823 

meters. As mentioned earlier, in the design of this LQR controller, the particle swarm optimization method 

was employed to calculate the weight matrices, rendering this controller outperform the PID controller. 
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Although a better result was obtained, it can be stated that the performance of the LQR controller is yet 

evaluated as fair at best, because the flight time in this controller is still rather large for a short-range surface-

to-air engagement, plus the fact that the height at which the missile-target collision occurred is still rather 

low, making this controller still inappropriate for air defense purposes. As stated earlier, in cases of short-

range air defense, it is essential that the missile and the target collide at a rather higher altitude, and the 

target should not get the chance to come close to the defense site positions. In addition, in the LQR 

controller, the angles reach their reference values at the beginning of the missile's flight rather than converge 

throughout the flight, which offers the target chances to recognize or foresee the missile's path and try to 

evade the missile and avoid collision. The weight matrices of this LQR controller are obtained using the 

particle swarm optimization method. Also, for the LQR controller, linearization must be done, with the 

linearized model effective only in limited operating points. Due to missile dynamics, linearization is not 

guaranteed for all modes. The time to collision using this LQR controller is rather high, which is not 

desirable, since time plays a key and decisive role in a missile-target conflict. 

4-4 Simulating the performance of the implicit predictive model controller 

 

In this section, performance of the implicit predictive model controller is examined. 

 

Fig. 12 - The missile-target relative distance using the implicit predictive model controller 

 

 
Fig. 13 - Changes of elevation and side angles with time using the implicit predictive model controller 
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Fig. 14 - Missile control input with the implicit predictive model controller 

 

Fig. 15 Missile-target trajectories using the implicit predictive model controller 

 

Fig. 12 shows the missile-target relative distance, which distance approaches close to zero in about 3.72 

sec. by which collision takes place. This is a reasonable time in air defenses for short range scenarios, 

because after firing, the missile quickly moves towards the target in this short time, and the missile does 

not leave a chance for the target to evade the missile by a maneuver to avoid collision with the missile. 

Also, Fig. 13 shows that the flight angles converge in reasonable time. According to Fig. 14, the control 

input, appearing quite reasonable, forced the missile to move towards the target, as verified by the missile 

and target trajectories depicted in Fig. 15, leading to collision at a height of approximately 1260 meters.  

Online linearization method was used in MPC controller design and according to the simulation results, the 

performance of this controller was quite superior compared to those of PID or LQR controllers. As the 

simulation results indicate, it can be inferred that the performance of the MPC controller is evaluated as 

superior due to the fact that the flight time with this controller is reasonable for a short-range surface-to-air 

engagement, and the height at which the missile-target collision occurs is more of a reasonable  one in cases 

of short-range defenses. As stated earlier, in a short-range air defense, it is normally best for the missile and 

the target to collide at a higher altitude so that the target would not come too close to the missile defense 

site. 
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To ensure a comprehensive evaluation of the controllers, not only were the miss distance and time to impact 

considered, but also the control effort required by each approach was examined. The control effort was 

quantified using the Integral of Squared Control Effort (ISCE) metric, defined as: 

(70) 𝐽𝑢 = ∫𝑢
2𝑑𝑡 

, where u represents the control input. This metric provides insight into the total energy expenditure of the 

control system, ensuring that performance improvements do not come at the cost of excessive actuator 

effort. 

The results, presented in Table 4, indicate that the MPC-based controller achieves the best overall 

performance, minimizing both the miss distance and time to impact, while also requiring significantly lower 

control effort compared to PID and LQR controllers. The PID controller exhibits the highest control effort, 

which can be attributed to its reliance on direct error correction without predictive optimization. The LQR 

controller demonstrates a better balance between performance and effort; however, it lacks the constraint-

handling capabilities of MPC, which allows for more efficient actuator usage. 

The MPC controller, benefiting from its predictive capability and optimal constraint handling, results in the 

lowest control effort, ensuring that the missile maneuvers efficiently without excessive actuator activation. 

This highlights the advantage of using an online predictive control strategy for integrated guidance and 

control systems, particularly in scenarios where energy efficiency and actuator longevity are critical factors. 

Finally, a quantitative comparison between the results of the controllers studied in this article is presented 

in Table 4. 

 
 

Table 4 – Quantitative performance comparison of the three controllers examined 

 PID LQR implicit MPC 

missile flight time 49.66 (sec)       32.30 (sec)    3.72 (sec) 

Missile-target collision height 310 (m)        823 (m)    1260 (m) 

Control Effort 245.7 190.2 85.4 
 

5- Conclusion 

In this paper, the guidance and control of an air defense Flying Vehicle is proposed using online model 

predictive control for integrated 3D Flying Vehicle-target model. The integrated guidance and control 

equations of the Flying Vehicle and the target were fully derived , followed by the design of the controllers. 

In order to evaluate the proposed controllers, a PID controller was considered as well. The results of this 

controller were not evaluated favorably due to long flight time and inappropriate control law, leading to 

low flight height. Next, the LQR controller was designed and the results of this controller were evaluated 

according to the simulations. Then the proposed controller of this article, namely the predictive controller 

of the online model, was designed. According to the simulations, it can be said that the total time to missile-

target collision is about 3.72 seconds, which is a quite reasonable time for short-range air defense missiles, 

and the control law is fully applied within the available range without saturation. This control law causes 

the missile to maneuver and the missile hits the target at an altitude of 1260 meters. Such an acceptable 

height is quite important. In addition, the time to collision was not too high in short-range situations, so that 
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the hostile target did not have the chance to position itself and perform unpredictable maneuvers to evade 

the missile and avoid collision. Overall, the performance of the predictive controller of the online model 

was evaluated favorably. 
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